Por favor, use este identificador para citar o enlazar este ítem: http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/8854
Refining SARS-CoV-2 Intra-host Variation by Leveraging Large-scale Sequencing Data
Fatima Mostefai
Jean-Christophe Grenier
Raphaël Poujol
Julie Hussin
Acceso Abierto
Atribución-NoComercial-SinDerivadas
https://doi.org/10.1101/2024.04.26.591384
https://www.biorxiv.org/content/10.1101/2024.04.26.591384v2
Understanding the evolution of viral genomes is essential for elucidating how viruses adapt and change over time. Analyzing intra-host single nucleotide variants (iSNVs) provides key insights into the mechanisms driving the emergence of new viral lineages, which are crucial for predicting and mitigating future viral threats. Despite the potential of next-generation sequencing (NGS) to capture these iSNVs, the process is fraught with challenges, particularly the risk of capturing sequencing artifacts that may result in false iSNVs. To tackle this issue, we developed a workflow designed to enhance the reliability of iSNV detection in large heterogeneous collections of NGS libraries. We use over 130,000 publicly available SARS-CoV-2 NGS libraries to show how our comprehensive workflow effectively distinguishes emerging viral mutations from sequencing errors. This approach incorporates rigorous bioinformatics protocols, stringent quality control metrics, and innovative usage of dimensionality reduction methods to generate representations of this high-dimensional dataset. We identified and mitigated batch effects linked to specific sequencing centers around the world and introduced quality control metrics that consider strand coverage imbalance, enhancing iSNV reliability. Additionally, we pioneer the application of the PHATE visualization approach to genomic data and introduce a methodology that quantifies how related groups of data points are within a two-dimensional space, enhancing our ability to explain clustering patterns based on their shared genetic characteristics. Our workflow sheds light on the complexities of viral genomic analysis with state-of-the-art sequencing technologies and advances the detection of accurate intra-host mutations, opening the door for an enhanced understanding of viral adaptation mechanisms.
bioRxiv
01-05-2024
Preimpreso
Inglés
Público en general
VIRUS RESPIRATORIOS
Aparece en las colecciones: Materiales de Consulta y Comunicados Técnicos

Cargar archivos: