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Canada5

2 Montreal Heart Institute, Québec, Canada6
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Abstract10

Understanding the evolution of viral genomes is essential for elucidating how viruses11

adapt and change over time. Analyzing intra-host single nucleotide variants (iSNVs)12

provides key insights into the mechanisms driving the emergence of new viral lineages,13

which are crucial for predicting and mitigating future viral threats. Despite the poten-14

tial of next-generation sequencing (NGS) to capture these iSNVs, the process is fraught15

with challenges, particularly the risk of capturing sequencing artifacts that may result16

in false iSNVs. To tackle this issue, we developed a workflow designed to enhance the17

reliability of iSNV detection in large heterogeneous collections of NGS libraries. We use18

over 130,000 publicly available SARS-CoV-2 NGS libraries to show how our comprehen-19

sive workflow effectively distinguishes emerging viral mutations from sequencing errors.20

This approach incorporates rigorous bioinformatics protocols, stringent quality control21

metrics, and innovative usage of dimensionality reduction methods to generate represen-22

tations of this high-dimensional dataset. We identified and mitigated batch effects linked23

to specific sequencing centers around the world and introduced quality control metrics24

that consider strand coverage imbalance, enhancing iSNV reliability. Additionally, we25

pioneer the application of the PHATE visualization approach to genomic data and in-26

troduce a methodology that quantifies how related groups of data points are within a27
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two-dimensional space, enhancing our ability to explain clustering patterns based on their28

shared genetic characteristics. Our workflow sheds light on the complexities of viral ge-29

nomic analysis with state-of-the-art sequencing technologies and advances the detection30

of accurate intra-host mutations, opening the door for an enhanced understanding of viral31

adaptation mechanisms.32
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1 Introduction33

The advancements in high-throughput sequencing technologies have revolutionized the study34

of viral genomes, particularly evident in the case of SARS-CoV-2 during the COVID-19 pan-35

demic. The ability to track the virus’s mutations and evolution during host infection is critical36

in understanding the emergence of various variants of concern (VOCs). These VOCs, result-37

ing from the accumulation of mutations, demonstrate the importance of selective pressures38

both within an individual host (intra-host) and during transmission between hosts (inter-host)39

(Lauring 2020). This complex interplay is key to the evolution of viral lineages, influenced40

by factors like error-prone replications and host RNA-editing mechanisms (Di Giorgio et al.41

2020). In the current literature, there are several hypotheses to explain the interplay between42

intra-host and inter-host dynamics in the development of SARS-CoV-2 VOCs (Markov et al.43

2023). These hypotheses include evolution within chronically infected individuals (Sonnleit-44

ner et al. 2022; Quaranta et al. 2022; Hill et al. 2022; Ghafari et al. 2022; Oude Munnink45

et al. 2021; Hale et al. 2022; Oreshkova et al. 2020; Bashor et al. 2021), spillovers from animal46

populations (Washburne et al. 2022; Sacchetto et al. 2021; Robinson et al. 2023; Goldberg et47

al. 2023; Rajendran et al. 2022), and emergence in regions with limited genomic surveillance.48

Understanding these processes is vital to explain the rapid evolution of VOCs such as Delta49

and Omicron, which have shown significant evolutionary leaps.50

In response to the pandemic, a vast number of next-generation sequencing (NGS) libraries51

for SARS-CoV-2 have been generated, primarily to construct consensus sequences for tracking52

inter-host mutations and VOCs. However, they also provide valuable insights into intra-53

host diversity, enabling the identification of intra-host single nucleotide variants (iSNVs) that54

are key in exploring hypotheses around VOC emergence. Despite the considerable size and55

breadth of available NGS libraries, the existing body of research on iSNV analysis remains56

limited, with the majority of studies focusing on a relatively small number of NGS libraries57

(Sun et al. 2023; Messali et al. 2023; Xi et al. 2023; Sun et al. 2023; Armero et al. 2021;58

Wertheim et al. 2022; Y. Wang et al. 2021; Sonnleitner et al. 2022; Zhang et al. 2022; Quaranta59

et al. 2022). This gap in research can also be attributed to challenges related to data quality,60

such as the presence of sequencing artifacts that introduce errors and lead to false iSNVs.61

To mitigate these challenges, current practices in intra-host viral analysis include the use of62
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technical replicates (Zhang et al. 2022), which, while effective, are resource-intensive, and the63

application of hard filters on coverage and frequency, which lack uniformity across different64

studies and often overlook noteworthy sequencing artifacts like strand bias (Roder et al. 2023;65

Armero et al. 2021; Hedskog et al. 2010; Bull et al. 2011; Tonkin-Hill et al. 2021). This concern66

underscores the need for more standardized methodologies in processing complex sequencing67

data to ensure accurate and reliable iSNV analysis.68

In computational biology, dimensionality reduction techniques are commonly used to sim-69

plify the representation and analysis of complex datasets, like viral sequencing data, and70

to uncover inherent data biases. These techniques, which have seen significant improve-71

ments with the rise of high-dimensional data, include Principal Component Analysis (PCA)72

(Novembre et al. 2008), often used for summarizing human genetic data, t-SNE (Platzer 2013;73

Tamazian et al. 2022) for analyzing local structures, and PHATE (Moon et al. 2019), a novel74

method that allows visualization of both global and local structures in high-dimensional data.75

Despite the potential of these methods, their application to the extensive SARS-CoV-2 data76

has been limited, often confined to analyzing consensus sequences (Hozumi et al. 2021; B.77

Wang et al. 2021; Mostefai et al. 2022). This gap highlights an opportunity for a broader78

application of the dimensionality reduction methods on viral genome data.79

Here, we address this gap by using a comprehensive set of publicly available SARS-CoV-280

NGS libraries from the NCBI database, representing the pandemic’s initial years. We use a81

combination of bioinformatics tools, stringent quality control measures, and dimensionality82

reduction methods such as PHATE and t-SNE to identify intra-host mutations from sequenc-83

ing artifacts. Our approach provides a workflow for analyzing SARS-CoV-2 sequencing data84

and establishes adapted thresholds for the 2020 and 2021 datasets. In this study, we estab-85

lish a framework for rapid and precise analysis of intra-host viral data, aiming to support86

pandemic preparedness and response.87

2 Results88

2.1 Curation Pipeline Overview89

While NGS data offers valuable insights into viral diversity and evolution, extracting meaning-90

ful information demands rigorous bioinformatics and representation approaches. A systematic91
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methodology is crucial to process this data accurately, ensuring the reliability of identified92

iSNVs. We, therefore, propose a comprehensive workflow to extract meaningful intra-host93

mutations from NGS data. Our workflow is divided into two levels (Figure 1): the processing94

and quality control of a set of libraries (Figure 1A) and the processing and quality control of95

iSNVs within each library (Figure 1B).96

To build a set of high-quality libraries, we meticulously processed a large set of Illumina97

amplicon paired-end sequencing libraries, ensuring a representative sample across various time98

points and locations. The data processing includes adapter and quality trimming, alignment99

to the SARS-CoV-2 reference genome, primer trimming, and whole genome coverage quality100

control (see Method section 4.1). Using the processed libraries, we performed iSNV calling and101

computed key metrics such as Alternative Allele Frequency (AAF ) and Strand bias likelihood102

(S) (see Methods). These metrics help to accurately identify putative iSNVs while minimizing103

artifacts. Next, dimensionality reduction methods, such as PHATE and t-SNE, are applied104

to visualize and interpret the iSNV data through analyses of clustering structures. In this105

process, we generate representations in two distinct ways: by the library, where each point in106

the visualization represents a summary of the library, and by genomic position, where each107

point corresponds to a specific genomic position summarizing its behaviour across libraries.108

PHATE maintains meaningful distance between clusters (Moon et al. 2019), preserving hier-109

archical relationships between sequencing libraries, we therefore use this technique to present110

our main results. Similar findings are observed using t-SNE (see supplementary information111

section 10.5). To differentiate between potential artifacts and biologically relevant patterns,112

the clustering structures are measured using the Percentage of Nearest Neighbors (PNN)113

presenting the same lineage label (as defined by the World Health Organization, WHO) or114

sequencing center (SC), providing a robust metric to quantify clustering structures of different115

sets of iSNVs. While the null hypothesis is for iSNVs to be randomly distributed, SC labels116

are used to check for associations with sequencing centers as a proxy to identify potential arti-117

facts. Conversely, WHO labels are expected to reflect biological relevance, with the limitation118

that some sequencing centers favour the sequencing of some lineages over others.119
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Figure 1: SARS-CoV-2 Sequencing Library Processing Workflows. A: Processing workflow of
a set of SARS-CoV-2 sequencing libraries. The workflow starts with selecting and downloading
147,537 FastQ libraries from NCBI. Next, these libraries were trimmed for adapters, mapped
to a reference, and trimmed again for primer targets. We set whole genome coverage filters of
mean depth (C) > 100X and breadth of coverage (B) > 20000 on each library l to keep only
high-quality libraries, keeping 128,423 libraries for further analysis. B Processing workflow of
a single RNA sequencing library. Within each high-quality sequencing library, base calling was
done to extract iSNVs. During this process, the ends of the genome were removed, keeping
genomic positions p between 101 and 27778 and the depth D > 100X of p. Subsequently, for
each iSNV, we computed the following quality metrics: Alternative Allele Frequency (AAF ),
Forward Strand Ratio (FSR), and Strand bias likelihood (S, equation 1). Thresholds for
AAF and S metrics were established using dimensionality reduction visualization methods,
reducing the data into two dimensions by either the libraries (left) or the genomic positions
(right).
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2.2 Extracting Emerging de novo iSNVs120

We processed 128,423 high-quality SARS-CoV-2 sequencing libraries from the first two years121

of the COVID-19 pandemic, ensuring a representative sampling across time and geographic122

locations (Figure 2A). Genome data quality was assessed by coverage depth (Figure 2B,123

x-axis), breadth (Figure 2B, y-axis), and strand balance (Figure 2C). The distribution of124

depth and breadth of coverage reveals center-specific quality variability. In turn, the strand125

balance coverage shows unbalanced strand coverage across the genome with an oscillating126

pattern at the same genomic regions independent of the sequencing center (see supplementary127

information section 10.2).128
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Figure 2: Data description and whole genome quality control. A: The 147,537 Illumina paired-
end amplicon sequencing libraries were selected and downloaded from NCBI. Each bar in the
graph represents the number of samples, categorized by their respective collection dates, with
labels indicating their continents. B: The x-axis shows each library’s mean depth of coverage
(log scale), while the y-axis shows the breadth of coverage. This breadth of coverage is the
count of genomic positions covered by at least 100X of depth (D). Libraries with at least 1,000
libraries (93%) in our dataset are explicitly labelled with the sequencing centers, while the
remaining libraries have been grouped under the ”Others” label. C: Whole Genome forward
strand ratio (FSR) averaged across libraries for each genomic position. The gene annotations
are overlaid on the top panel.
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We identified a total of 11,635,668 iSNVs in these libraries before any filtering steps, av-129

eraging 91 iSNVs per library (see Methods section 4.3 and Table S1). PHATE representation130

of the raw iSNV dataset distinctly discriminates libraries according to WHO lineage annota-131

tions (Figure 3A). The mean Percentage of Nearest Neighbours from the same WHO lineage132

(PNNWHO) (Figure 3B) is at 98.39%, corroborating a strong lineage-specific signature in the133

raw iSNVs (see Methods section 4.4).134

All iSNVs Consensus iSNVs De novo iSNVsA C E

B D F
98.39% 99.05% 54.83%

Figure 3

Figure 3: The PHATE representation organizes the unfiltered SARS-CoV-2 libraries according
to WHO lineage annotation.A: PHATE visualization of the full dataset matrix with 11,635,668
iSNVs, using WHO lineage labels. B: The same dataset as A, labelled with the percentage of
nearest neighbours that share the same WHO annotation as the library itself, and the total
PNNWHO value is displayed at the top left. Darker-coloured points signify a lower percentage
of neighbouring points sharing the same label as the focal point. C: PHATE visualization of
the consensus matrix, containing 3,634,563 iSNVs, with WHO lineage labels. D: Consensus
matrix, similar toC, but with PNNWHO labelling and the PNNWHO value at the top left. E:
PHATE visualization of the de novo matrix, including 8,000,668 iSNVs, labelled with WHO
lineage annotations. F: de novo iSNV matrix, as in E, but with PNNWHO labelling and the
PNNWHO value at the top left. Where a lineage lacks a WHO designation, it is labelled as
”Other,” and unassigned lineages are labelled as ”Unassigned.”

This result is likely driven by lineage-specific mutations, herein referred to as consensus135

iSNVs, which are identified as having an Alternative Allele Frequency (AAF ) over 75% and136

are usually part of consensus sequences (Ferreira et al. 2021; Murall et al. 2021; Thielen137
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et al. 2021). These consensus iSNVs account for 3,634,563 iSNVs, averaging 28 per library138

(Table S1), aligning with the SARS-CoV-2 mutation rate reported by NextStrain (Hadfield139

et al. 2018) for this time period highlighting the reliability of these consensus iSNVs. PHATE140

representation of consensus iSNVs only again shows strong alignment with WHO lineages141

(Figure 3C), which is reflected in the high PNNWHO values in PHATE of 99.05% (Figure142

3D), confirming these iSNVs largely drive the lineage-specific clustering observed in our raw143

iSNV dataset.144

In contrast, we define putative de novo iSNVs (AAF < 0.75), representing emerging viral145

mutations within the host, totalling 8,000,668 in the raw dataset, averaging 62 per library146

(Table S1). The de novo iSNVs exhibit more heterogeneous clustering patterns (Fig. 3E)147

with a lower PNNWHO value of 54.83% (Figure 3F), suggesting a less pronounced lineage-148

based structure. However, the clustering patterns of the de novo iSNVs show a stronger149

alignment with lineage structure than expected by chance, with the baseline PNNWHO from150

random resampling at 32.82% for PHATE representation. This highlights the significance of151

the observed PNNWHO compared to the baseline value, suggesting a lineage-specific biolog-152

ical relevance in the emerging mutations. The controlled sub-sampling experiments (Figure153

S1, detailed in Methods section 4.5 and in supplementary information section 10.4) further154

support these observations, underscoring the distinct clustering behaviours of consensus and155

de novo iSNVs.156

2.3 Resolving Artifacts in de novo iSNVs157

Due to the geographic distribution of lineages, sequencing centers often sequence certain158

lineages more frequently than others, potentially leading to technical artifacts that affect159

lineage clustering in the de novo iSNV subset. This is confirmed by the clustering analysis of160

the 8,000,668 de novo iSNVs (Figure 4), where the PHATE representation showed significant161

sequencing center batch effects (Figure 4A), with a mean percentage of nearest neighbours162

from the same sequencing center (PNNSC) value of 62.31% (Figure 4B), greatly exceeding163

the baseline value of 27.53%, expected by chance. This result indicates that our set of de164

novo iSNVs likely contains sequencing artifacts. To filter out sequencing artifacts from the165

set of de novo iSNVs and refine the dataset, we used the strand bias metric S (see Methods,166

equation 1) and the Alternative Allele Frequency (AAF ).167
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Figure 4: The Use of S and AAF Metrics Improves SARS-CoV-2 de novo iSNVs’ PHATE
Structure by Mitigating Sequencing Center Batch Effects and Artifacts. A: PHATE visual-
ization of the unfiltered de novo matrix containing 8,000,668 iSNVs, labelled by the libraries’
sequencing centers. B: PHATE visualization as in A, but with labels showing the percentage
of k=100 nearest neighbours that share the same Sequencing Center (SC) annotation as the
library itself and the total PNNSC value is displayed at the top left. C and D: Boxplots
displaying PNNSC values for each PHATE visualization, derived from a sub-sampling con-
trolled experiment across ten replicates (see method section 4.5). C shows PNNSC values
across various S metric thresholds, and D presents PNNSC values across different AAF met-
ric thresholds. E: PHATE visualization of the de novo matrix, filtered based on S and AAF
thresholds, labelled by sequencing centers. F: PHATE visualization as in E, but with labels
showing PNNSC values, and the total PNNSC value is displayed at the top left. In this
representation sequencing centers with at least 1,000 libraries in our dataset are explicitly
labelled with its sequencing center as follows: Welcome Sanger Institute (WSI), National In-
stitute of Health DR. Ricardo Jorge (NIHRJ), Doherty Institute (DI), CDC-OAMD (CDC),
Comenius University in Bratislava (CUB), Ravi Kant (RK), University of Tartu in Estonia
(UTE), Chan Zuckerberg Biohub (CZB), Kwazulu-Natal Sequencing Platform (KSP), INAB
Insitute in Certh (IIC), BROAD GCID (BROAD), Wales Specialist Virology Center (WSVR).
While the remaining libraries were grouped under the ”Other” label.
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The PHATE visualization of the unfiltered de novo iSNVs prominently identifies the Well-168

come Sanger Institute as a major cluster (Figure 4A) due to its significant representation of169

75% in our library set. This underscores the potential impact of unbalanced sampling on170

cluster formation and potentially PNNSC values. To neutralize this imbalance, we designed171

a controlled sub-sampling experiment, evenly selecting 10,000 libraries from each of the top172

10 sequencing centers based on library counts (see Method section 4.5), aiming to reduce173

the impact of sampling bias on the PNNSC values. We thus assessed the impact of filtering174

based on these two metrics, S and AAF , on the PHATE clustering structure measured with175

PNNSC using the controlled sub-sampling experiment to mitigate bias from uneven sampling176

across sequencing centers (Figure 4C, D).177

To address the observed strand coverage unbalanced in our dataset (Figure 2C), we used178

the strand bias metric S, which assesses the likelihood of strand bias artifacts using the179

alternative allele’s strand coverage. Initially, filtering out iSNVs with S < 1% and 486 genomic180

positions showing recurrent strand bias across libraries (see supplementary information section181

10.3) significantly lowers sequencing center-specific artifacts. This was reflected in the reduced182

PNNSC values (Figure 4C) in the controlled sub-sampling experiments. However, PNNSC183

values remained stable when the S threshold was increased beyond 1%, suggesting no further184

improvement based on this metric (Figure 4C).185

Filtering based on allele frequency is a key metric in genomic studies. Some studies use a186

low threshold, which may result in the inclusion of erroneous intra-host mutations (Y. Wang187

et al. 2021; Armero et al. 2021; Popa et al. 2020; Tonkin-Hill et al. 2021; Lythgoe et al.188

2021). In contrast, more stringent criteria could overlook the analysis of low-frequency, de189

novo intra-host mutations. Further refinement of our iSNV set based on the AAF metric190

led to an additional decrease in PNNSC values (Figure 4D), particularly when increasing191

the AAF threshold to 5%. Despite testing additional combinations of thresholds, the final192

PNNSC metric did not reach the baseline value of 10%, suggesting that the optimal threshold193

on the AAF metric is 5%.194

Applying these optimal thresholds of 1% for S and 5% for AAF to filter out iSNVs, the195

de novo iSNV count dropped from 8,000,668 to 468,651, averaging six iSNVs per library196

(Table S1). This process notably decreased sequencing center batch effects in the PHATE197

representation (Figure 4E-F), resulting in a PNNSC value of 36.23%. While this value still198
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exceeds the baseline of 27.69%, the reduction marks an improvement in minimizing batch199

effects. Additionally, the PNNSC value for lineage-defining consensus iSNVs also does not200

reach the baseline value (Figure 4D), implying that completely separating sequencing center201

influences from lineage-specific signatures might represent an intractable challenge.202

2.4 Identifying Outliers and Center-Specific Patterns203

In our analysis of the 468,651 filtered de novo iSNVs, there remain outlier clusters showing204

sequencing center homogeneity in the PHATE representation (Figure 4E-F). Notably, a small205

but distinct set of libraries forms an outlier cluster, markedly separated from other libraries in206

the PHATE representation (Figure 4E-F, indicated by an arrow). This observation suggests207

that specific libraries from the same sequencing centers potentially have an excess of shared208

iSNVs. We thus analyzed libraries’ intra-host mutational load, defined as the number of209

iSNVs in a library (see Method section 4.6). While most libraries in our dataset contain only210

one or two iSNVs (Figure S2), some exhibit a high intra-host mutational load, with tens of211

iSNVs per library.212

To determine the optimal threshold for excess iSNVs in libraries, we computed the PNNSC213

value in PHATE representation after sequentially removing the top 1%, 5%, and 25% of214

the most mutated libraries (Figure S2A-B). Removing the top 1% of outliers impacted the215

PPNSC value the most, decreasing it by 2%. Additional exclusions, even down to only216

keeping libraries with one iSNV, did not further reduce the PNNSC value (Figure S2B, 50th217

percentile), underlining the impact of extreme outliers in the PHATE representation of the218

full dataset.219

To ensure biologically relevant libraries are not excluded, we explored in-depth the patterns220

observed in the top 1% outlier libraries (1,270 outlier libraries) by computing the PHATE221

representation only on these libraries (Figure 5A, S3A). They strongly cluster by sequencing222

centers, indicating that their iSNVs are enriched for sequencing center-specific artifacts. In223

this PHATE representation of the outlier libraries, we note four main clusters (Figure S3).224

Cluster 1 is composed of 159 Doherty Institute libraries, corresponding to Australia’s first225

pandemic wave (March-August 2020) (Figure S3B). Cluster 2 comprises 104 libraries from226

Scilifelab Stockholm, collected at the end of the second pandemic wave. Cluster 3 includes227

109 libraries from the Kwazulu-Natal Sequencing Platform, with collections from January to228
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April 2021. Cluster 4 comprises 75 libraries from the Ravi Kant sequencing center, with a229

collection peak in May 2021.230

A B

Cluster 2

DI
RK
KSP
WSI
SS
Other

Cluster 3

Cluster 1

Figure 5 (\label{fig:outlier_libraries})

Cluster 3Cluster 2Cluster 1C

Figure 5: Unique Mutational Patterns in SARS-CoV-2 outlier libraries Tied to Sequencing
Centers. A: PHATE visualization of outlier libraries, showcasing distinct clusters of SARS-
CoV-2 libraries, each associated with specific sequencing centers. B: Displays the PHATE
representation of genomic positions in outlier libraries, labelled with the most frequent sub-
stitution types observed across these libraries. C: Mutational patterns in iSNVs across the
three distinct clusters in A, each associated with a specific sequencing center. C sequentially
presents mutational patterns in iSNVs from Cluster 1 sequenced by the Doherty Institute,
Cluster 2 associated with Scilifelab Stockholm, and Cluster 3 predominantly sequenced by the
Kwazulu-Natal Sequencing Platform. The sequencing center’s labels are as follows: Welcome
Sanger Institute (WSI), Doherty Institute (DI), Ravi Kant (RK), Kwazulu-Natal Sequencing
Platform (KSP), and Scilifelab Stockholm (SS).

To detect the mutational patterns responsible for these effects, we computed PHATE rep-231

resentation by genomic position on these outliers libraries (Figure 5B), showing clustering of232

C>T and G>T mutations. This contrasts with non-outlier libraries, which do not show clear233

clustering based on substitution patterns (Figure 6A). Quantifying the proportion of iSNVs234
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based on the substitution spectrum (see Methods section 4.7) revealed unique mutational235

signatures within each of the three main clusters with the most libraries (Figure 5C). Each236

cluster, associated with a specific sequencing center, exhibited mutational patterns distinct237

from those in non-outlier libraries (Figure 6A). Cluster 1 displays a prominent G>T pattern238

in de novo iSNVs, not seen in the consensus iSNVs from these same sequences. Interestingly,239

we identified 40 genomic positions with a de novo iSNV in at least 80% of the libraries in240

cluster 1. Cluster 2 libraries also displayed a unique mutational pattern in their iSNVs (Fig-241

ure 5C, center), with T>G, T>C, A>G, and A>C as the predominant substitutions. These242

also diverged from their respective consensus iSNVs except for T>G. A notable 30 genomic243

positions have a de novo iSNV in at least 80% of the libraries in cluster 2. Lastly, cluster 3244

libraries presented an excess of G>T and C>T that differed from their consensus iSNVs. In245

this cluster 3, 14 genomic positions have a de novo iSNV in at least 80% of the libraries.246

Overall, our outlier analysis revealed unique mutational patterns in de novo iSNVs across247

different sequencing centers associated with an excess of iSNVs, showing the influence of248

center-specific sequencing factors. These findings confirm the need to filter out the top 1%249

outlier libraries with a mutational load above 44 iSNVs in our library set. Our results also250

highlight the importance for sequencing centers to assess both the abundance of iSNVs and251

the presence of unique mutational patterns as key indicators for evaluating their sequencing252

processes.253

2.5 Deriving a Final de novo iSNV Dataset254

After our extensive curation, we kept 296,437 de novo iSNVs with AAF > 5% and S > 1%,255

from 72,470 non-outlier libraries with at least one iSNV, as our final curated dataset. The256

PHATE visualization of the 296,437 retained de novo iSNVs by genomic position display257

no clustering according to the mutational pattern, underscoring the optimal curation of the258

dataset (Figure 6A). Additionally, the substitution spectrum of this curated set shows a259

prevalence of C>T and G>T substitutions (Figure 6B), aligning with consensus iSNV patterns260

and known SARS-CoV-2 mutational trends (Moshiri et al. 2023; Fumagalli et al. 2023; Bloom261

et al. 2023; Saldivar-Espinoza et al. 2023).262

The PHATE visualization by library (Figure 6C) shows greater sequencing center ho-263

mogeneity compared to the initial representation of the raw iSNV data (Figure 4A). WHO264
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Figure 6 (\label{fig:nonoutlier_libraries})

A

C D

PNNSC expected = 26.29%

PNNWHO expected = 32.81%

B

Figure 6: Attaining a Refined and Comprehensive Collection of SARS-CoV-2 Intra-host Se-
quencing Libraries and iSNVs via Meticulous Filtering. A: PHATE visualization of the refined
library set, excluding outliers, with de novo iSNVs filtered based on S and AAF metrics. Each
library is labelled by its sequencing center. B: Similar to A, but with labels showing the per-
centage of nearest neighbours (PNNSC) for each sequencing center and the total PNNSC

value displayed at the top left. C: The total 296,437 de novo and consensus iSNVs, stratified
by AAF and substitution types to reveal mutational biases. D: Presents a PHATE visual-
ization of the transposed matrix for non-outlier libraries with filtered de novo iSNVs. Each
point represents a genomic position of the SARS-CoV-2 genome, labelled by its most frequent
substitution type across the libraries. Sequencing centers with at least 1,000 libraries are
explicitly labelled with its sequencing center as follows: Welcome Sanger Institute (WSI), Na-
tional Institute of Health DR. Ricardo Jorge (NIHRJ), Doherty Institute (DI), CDC-OAMD
(CDC), Comenius University in Bratislava (CUB), Ravi Kant (RK), University of Tartu in
Estonia (UTE), Chan Zuckerberg Biohub (CZB), Kwazulu-Natal Sequencing Platform (KSP),
INAB Insitute in Certh (IIC), BROAD GCID (BROAD), Wales Specialist Virology Center
(WSVR).
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lineage annotations of the same PHATE representation show similar lineage homogeneity265

(Figure 6D). Both sequencing center and WHO lineage annotations in the PHATE represen-266

tation concentrate the majority of libraries into a single large cluster, as shown by the density267

plots. Despite the presence of sequencing center-specific clusters (Figure 6C), lineage-specific268

clustering is also noticeable (Figure 6D), suggesting that lineages from similar geographic269

regions may share iSNV generation processes, meriting further investigation. Nevertheless,270

the optimal refinement of the dataset is supported by a substantial decrease in the PNNSC271

value, from 62.31% to 33.26% (baseline value 26.29%).272

3 Discussion273

Emerging de novo mutations, or iSNVs, which occur during the intra-host phase of infection,274

are critical for understanding viral diversity and evolution. These mutations can be detected275

by analyzing sequencing libraries from infected hosts, although the sequencing process may276

introduce artifacts, resulting in false iSNV calls. To address this challenge, we present a com-277

prehensive two-step workflow tailored for intra-host viral NGS analysis, specifically focusing278

on the SARS-CoV-2 RNA-seq libraries. It is specifically designed to robustly accommodate279

and correct for artifacts arising from the diverse sources present in our heterogeneous dataset,280

ensuring accurate detection of true iSNVs. First, we processed a large dataset of libraries281

with stringent whole genome quality control. Subsequently, we use these libraries for iSNV282

calling, employing specific quality metrics to differentiate putative iSNVs from artifacts. We283

also implemented dimensionality reduction techniques like PHATE and t-SNE to visualize284

and analyze library structures, enhancing our analysis with an explainability metric. Ap-285

plying this workflow to a substantial SARS-CoV-2 dataset, we identified a set of emerging286

(de novo) iSNVs for studying intra-host viral evolution, differentiating them from consensus287

iSNVs using a 75% allele frequency threshold. This threshold is often used for its balance288

between detecting true positives and minimizing false positives, at the expense of intra-host289

diversity, by consensus callers (Ferreira et al. 2021; Murall et al. 2021; Thielen et al. 2021).290

Additionally, we tackled the challenge of distinguishing de novo iSNVs from similar-frequency291

artifacts using tailored quality metrics to establish appropriate thresholds for a given dataset,292

ensuring our process is rigorous and non-arbitrary.293

16

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 1, 2024. ; https://doi.org/10.1101/2024.04.26.591384doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.26.591384
http://creativecommons.org/licenses/by/4.0/


Sequencing accuracy is influenced by multiple factors, including sample preparation, PCR294

amplification, and sequencing errors (Heguy et al. 2022; Zanini et al. 2017; McCrone et al.295

2016; Grubaugh et al. 2019). This is especially the case when accurately detecting viral intra-296

host diversity (McCrone et al. 2016; Illingworth et al. 2017; Zanini et al. 2017). Mutations297

appearing on only one strand are likely due to amplification errors, as putative mutations298

would be present on both strands. Known as strand bias artifacts, they have been overlooked299

in the literature (Dinis et al. 2016; Illingworth et al. 2017; Zanini et al. 2017), but when300

addressed in recent studies, it is typically through applying a stringent filter that counts301

the appearances of an alternative allele on each strand (Sun et al. 2023; Xi et al. 2023;302

N’Guessan et al. 2023). However, this common filtering approach fails to account for the303

inherent imbalances in strand coverage frequently observed in targeted sequencing of SARS-304

CoV-2. This oversight can significantly increase the risk of false negatives, with the rate of305

missed variants varying unevenly across the genome. In response, our strand bias metric takes306

a different approach by assessing the distribution of each iSNV’s alternative allele across both307

strands, explicitly accounting for the imbalance in strand coverage observed in our SARS-308

CoV-2 NGS libraries. This approach avoids the bias of traditional methods that only retain309

genomic positions covered by both strands, a restriction that could impact about two-thirds310

of the genome (Figure 2C). Additionally, our strand bias metric, while similar to a published311

formula (McElroy et al. 2013), is tailored to a large viral NGS dataset. Interestingly, we312

highlight a set of genomic positions frequently identified as strand bias artifacts supported313

by our large and comprehensive dataset and see supplementary information section 10.3). By314

masking these positions, we noted a significant reduction in sequencing center batch effects,315

indicating that these positions may be specific to sequencing centers. Therefore, we highly316

recommend masking these positions to mitigate sequencing errors and erroneous data analysis317

and provide an efficient way to do so (Mostefai et al. 2024).318

As intra-host viral genomic data grows in size and complexity (Chen et al. 2022; Smith319

et al. 2023), the challenge of managing these datasets increases. Dimensionality reduction320

methods are valuable for distilling this data into a more manageable form (Tapinos et al.321

2019; Paradis 2022). However, interpreting these methods’ two-dimensional representations322

can be challenging due to unclear biological significance (Karim et al. 2022). In our workflow,323

we have incorporated PHATE and t-SNE alongside a metric that computes the percentage of324
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nearest neighbours sharing the same annotation (e.g. sequencing center, WHO variant). This325

approach enhances the explainability of these techniques by highlighting relationships within326

specific groups of libraries in the representation, establishing a novel approach to analyzing327

high-dimensional viral sequence data. This methodology also facilitates the identification328

of optimal iSNV filtering thresholds, a critical aspect of sequencing data quality control.329

Implementing this approach allowed us to refine our quality metrics, resolve sequencing center330

batch effects, and improve the reliability of our iSNV dataset. Moreover, we have pioneered331

the use of PHATE in viral sequencing data analysis. We show that PHATE is especially332

effective at handling libraries with varying iSNV counts, unlike t-SNE, which is impacted333

by such libraries (see Figure S2 and supplementary information section 10.5). PHATE’s334

ability to accurately represent de novo mutations also demonstrates its potential for broader335

applications in areas requiring de novo mutation analysis, including the study of cancer clonal336

mutations (Muyas et al. 2023), evolutionary developmental biology (Short et al. 2018), and337

metagenomics (Keegan et al. 2016).338

Despite PHATE’s ability to handle libraries with varying iSNV counts, outlier libraries339

containing a large number of iSNVs significantly skewed the PHATE clustering structure,340

highlighting a problematic aspect where a small subset disproportionately impacts the overall341

analysis. The significant influence of these outlier libraries was apparent in the unique C>T342

and G>T mutational patterns observed in PHATE’s genomic position representation within343

the outlier only libraries (Figure 5B), supporting the need to treat these libraries separately.344

Additionally, the strong clustering by sequencing center of the top 1% outlier libraries suggests345

that iSNVs within these libraries include sequencing artifacts specific to each center. This346

was confirmed by the distinct mutational patterns and the recurrence of genomic positions347

enriched for iSNVs within each outlier cluster, which, in turn, are associated with different348

sequencing centers. The unique mutational signatures identified within the outlier clusters349

also provide insight into the potential mechanisms of error introduction or bias in sequencing350

workflows. For instance, the G T substitution pattern seen in the Peter Doherty Institute351

libraries at the beginning of the pandemic (March to August 2020) may signal RNA degra-352

dation. Following the adoption of improved sample storage protocols, this Institute noted353

a reduction in the count of observed mutations (Peter Doherty Institute platform members,354

personal communication). This change in sequencing libraries’ quality emphasizes the neces-355

18

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 1, 2024. ; https://doi.org/10.1101/2024.04.26.591384doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.26.591384
http://creativecommons.org/licenses/by/4.0/


sity of ongoing collaboration between sequencing centers and data analysts to adapt practices356

and enhance sequencing data accuracy and reliability in real time.357

Our approach, comprehensive as it is, faces some limitations. First, despite documented358

instances of mixed infections (Vatteroni et al. 2022; Rockett et al. 2022) where lineage-defining359

mutations appear at low frequencies, our current workflow is not designed to effectively cap-360

ture these variations. In cases of mixed infections, iSNVs characterized as de novo under our361

definition may actually stem from the co-presence of two (or more) different strains within a362

host, as they would fall below our 75% threshold for emerging mutations. Therefore, partic-363

ular care should be taken when analyzing datasets where a substantial proportion of samples364

could be mixed infections. In our analysis, we found little evidence of mixed infections, but it365

remains a possibility that some libraries—and consequently, iSNVs—could originate from such366

infections, though they would likely have been excluded during our outlier analysis. Further-367

more, our workflow is currently not specifically designed to address the complexity associated368

with calling insertions and deletions (indels), which is an area for future development. In369

particular, a benchmark of indel detection tools for intra-host data should be conducted to370

enhance this aspect of viral genomic analysis. Bridging this gap poses a notable challenge371

and offers a valuable opportunity for methodological innovation. This workflow is designed372

specifically for Illumina sequencing data, favoured for its lower error rate (Fox et al. 2014), and373

is less suitable for nanopore sequencing (Cook et al. 2024; Fournelle et al. 2024). The latter’s374

high error rate of about 10% complicates the detection of low-frequency emerging mutations.375

Our dataset, while diverse, primarily consists of libraries from European and North American376

sources, mirroring the availability of publicly accessible sequencing data (Chen et al. 2022).377

This situation underscores the need for improved sequence sharing and support for sequenc-378

ing capabilities in underserved regions. Additionally, our reliance on publicly available single379

instances of sequencing libraries leverages accessible data but complicates the confirmation of380

variant calls due to the absence of multiple replicates, as done previously. We address this by381

setting a minimum allele frequency threshold of 5%, higher than the typical Illumina error382

rate of 1% (Fox et al. 2014), aligning with the literature that advocates stricter thresholds for383

variant identification in the absence of replicates (Roder et al. 2023; Grubaugh et al. 2019).384

Nonetheless, our workflow and dataset of high-quality intra-host iSNVs have proven in-385

strumental in testing biological hypotheses and drawing conclusions on diverse areas of study.386
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Published applications include uncovering immune evasion mechanisms in SARS-CoV-2 through387

sequence analysis and epitope mapping (N’Guessan et al. 2023), comparing intra-host vi-388

ral evolution between immunosuppressed patients and the general population (Fournelle et389

al. 2024), and investigating intra-host mutations that influence epitope binding predictions390

(Caron et al. 2024). Additionally, this workflow and the identified set of de novo muta-391

tions open up new avenues for exploring hypotheses concerning viral intra-host diversity and392

evolution, providing a foundation for broader research initiatives in this field. For example,393

we observed that intra-host library clustering based on WHO variants persisted above base-394

line levels even after removing lineage-defining mutations. This leads us to hypothesize that395

lineage-defining genetic factors may contribute to the intra-host mutational patterns, suggest-396

ing a complex underlying mechanism of viral evolution within hosts. Our methodology has397

proven robust in detecting these subtle lineage characteristics despite variations in sample398

distribution, reinforcing the possibility of variant-specific effects on mutational events, a find-399

ing supported by a recent study (Bradley et al. 2024). This intriguing result warrants further400

investigation that could lead to the discovery of lineage dynamics and mutation impacts.401

In conclusion, our robust viral intra-host processing and analysis workflow enhances the402

use of existing cross-sectional sequencing libraries and improves the accuracy and depth of403

viral genomic analyses. This advanced bioinformatics methodology is crucial for deepening404

our understanding of intra-host diversity and strengthening preparedness strategies for fu-405

ture pandemics, proving essential for responding effectively to other viruses in forthcoming406

outbreaks.407

4 Methods408

4.1 Data Selection and Library Pre-processing409

We downloaded a set of SARS-CoV-2 Illumina amplicon paired-end sequencing libraries410

dataset from the first two years of the COVID-19 pandemic, ensuring a representative sam-411

pling across time and geographic locations. For each month from January 2020 to December412

2021, sequencing libraries were randomly chosen based on availability in the National Center413

for Biotechnology Information (NCBI): up to 5,000 from the UK, up to 1,000 from the USA,414

and up to 2,000 from other global regions, totalling a potential 8,000 libraries monthly (Figure415
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2A). This yielded a total of 147,537 downloaded libraries (supplementary information section416

10.1).417

For each library, Illumina sequencing adapters and bad-quality reads (Phred score <418

20) were trimmed from the sequencing reads using TrimGalore V.0.6.0 (https://github.419

com/FelixKrueger/TrimGalore). The trimmed libraries were mapped to the SARS-CoV-420

2 reference genome (NC045512.2) using BWA mem v.0.7.17-r1188 (Li et al. 2009), gen-421

erating BAM files. Next, we used the iVar pipeline for primer trimming (Grubaugh et422

al. 2019), using the ARTIC Network V3, V4, and V4.1 amplicon designs, as the sequenc-423

ing centers in our dataset predominantly use these three kits during the sampling period424

(https://github.com/artic-network/primer-schemes). We used the samtools mpileup425

(with specific parameters -Q 20 -q 0 -B -A -d 600000) (Danecek et al. 2021) to gener-426

ate pileup files containing read information for each BAM file. To parse the pileup files427

and extract relevant data, we employed the publicly available script pileup2base (https:428

//github.com/riverlee/pileup2base). We calculated the depth of coverage for each ge-429

nomic position, which is the number of reads aligning to the position. The mean coverage430

across all libraries is 10446X, so we labelled any position with depth below 100X (1% of the431

mean) as low-quality. We calculated two metrics to evaluate each library’s quality (Figure432

2B): (1) C, the mean coverage (the mean number of reads per position) and (2) B, the433

breadth of coverage (the number of genomic positions with a depth above 100X). We kept the434

libraries with C > 100X and B > 20,000 positions (representing two-thirds of the SARS-CoV-435

2 genome), yielding a total of 128,423 high-quality libraries. (see supplementary information436

section 10.1 for more details)437

4.2 Consensus Sequences and Lineage Annotations438

We obtained a consensus sequence for each of the 128,423 high-quality libraries using the439

iVar pipeline consensus calling tool (-q 20 -t 0.75 -m 20) (Grubaugh et al. 2019). These440

consensus sequences were annotated with Pango lineages using Pangolin 4.3 (Rambaut et al.441

2020), which were next used to annotate with World Health Organization (WHO) lineages442

(Alpha, Delta, Omicron, Delta, Gamma, and Others) using a custom script. Sequences with443

no Pango lineage were annotated as ’Unassigned’.444
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4.3 iSNV Calling and Encoding445

We called iSNVs present in the 128,423 high-quality sequencing libraries (Figure 1B) after446

extracting genomic positions between positions 101 and 29,778, to exclude positions located447

at both ends of the genome that are generally of lower quality. For each library, we used448

pileup2base (Danecek et al. 2021) to obtain a base file, which contains, for the 29,678 positions,449

the counts for each nucleotide (A, T, C, G) separated according to amplicon direction (forward450

or reverse strand). Because we are focusing our analyses on single nucleotide substitutions,451

we ignored the last two columns of the base file that report the number of reads with indels.452

During this step, we kept only positions with a minimum coverage read depth of 100X.453

We computed different iSNV metrics at the position level for each library using custom454

scripts. We define the alternative allele (AA) as the most frequent allele at a given position455

other than the reference allele. For each position and each library, we computed the Alter-456

native Allele Frequency (AAF ) as AAF = (DAA)/D, where D is the depth at the position457

studied and DAA is the depth for the alternative allele.458

Due to the nature of targeted sequencing with amplicon design (Guo et al. 2012), it is459

possible that a single position in the genome may not be sequenced in a balanced manner460

between the forward and reverse directions. We thus compute the forward strand ratio as461

FSR = Df/D, with Df the forward strand depth and D the total depth.462

To evaluate if an alternative allele exhibits unbiased sampling across both strand direc-463

tions, we used a binomial test. This test determines the probability of observing an allele464

predominantly on one strand, indicating a higher artifact likelihood. For the forward strand,465

let Y represent the expected count of reads bearing the alternative allele within the total466

forward strand reads, Df . Assuming Y follows a binomial distribution with a probability of467

success given by the AAF , the probability of observing at least Df
AA forward strand reads468

with the alternative allele (AA) is calculated as:469

Sf (Y ≤ Df
AA) =

Df
AA∑

y=0

(
Df

y

)
(AAF )y(1−AAF )D

f−y (1)

This same approach is applied to the reverse strand reads, Dr, to calculate the likelihood470

of observing at least Dr
AA reverse strand reads with the alternative allele. Finally, to ensure471

a stringent evaluation, we take the minimum value of these calculated probabilities for both472
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the forward and reverse strands. This minimum value serves as the Strand Bias Likelihood473

(S) metric for each iSNV, effectively quantifying the likelihood of no strand bias, and thus, a474

low value reflects the potential for the presence of an artifact.475

The resulting iSNVs for each sequencing library are represented by their AAF given476

position p in a library l (xp,l) (Figure1B). This forms a matrix X, where the rows are our477

128,423 high-quality sequencing libraries, and the columns are the genomic positions between478

101 and 27778. We encode the initial unfiltered matrix X with xp,l = AAFp,l for all iSNVs479

from a given library l, and when an iSNV is filtered out based on thresholds for AAF and S,480

xp,l is set to 0.481

4.4 Dimensionality Reduction and Clustering Evaluation482

Given the high dimensionality of matrix X, we used dimensionality reduction methods to483

explore the underlying structure within the high-quality libraries in two dimensions (2D). We484

used incremental principal component analyses (PCA) for initialization and then obtained485

2D representations of the PCA-transformed data using two different approaches: the widely-486

used t-distributed Stochastic Neighbor Embedding (t-SNE) (Tamazian et al. 2022; Maaten487

et al. 2008; Pedregosa et al. 2011) and the more recent heat diffusion for affinity-based tran-488

sition embedding (PHATE) (Moon et al. 2019). We applied t-SNE with the Python library489

sklearn.manifold.T-SNE and PHATE with the PHATE Python library (Moon et al. 2019).490

The 2D embedding outputs from PHATE and t-SNE are visualized in scatter plots where491

each library is coloured either by sequencing center or WHO lineage annotation.492

To measure the impact of specific subgroups of iSNVs on clustering structures based on493

either sequencing center (SC) or WHO lineage labels, we used a k-nearest neighbour (kNN)494

approach, using k=100. This value of k is selected to simplify interpretation as a percentage495

during neighbour selection and reflects the large number of libraries in our dataset. For496

each library l within a representation, we identify the 100 nearest libraries NN(l) using the497

sklearn.neighbors Python package (Pedregosa et al. 2011). We then calculate NNz(l), the498

count of nearest neighbours sharing the same z label as library l (where z is either WHO for499

lineage or SC for sequencing center), and compute the percentage of nearest neighbours with500

matching labels. For each representation, we derive a final PNNz as the mean percentage501

of nearest neighbours with matching labels across all libraries. A higher PNNz indicates502
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that label z describes the data’s clustering structure. We also generate a baseline PNNz,503

representing expected chance levels by randomly shuffling labels z before calculation. This504

baseline acts as a standard for assessing the significance of observed patterns, emphasizing505

the delta between observed and baseline PNNz over the choice of k value.506

4.5 Experimental Design to Mitigate Sampling Biases507

We designed a controlled sub-sampling experiment by randomly sub-sampling libraries for508

each WHO or sequencing center annotation to address the impact of biases stemming from509

unbalanced sampling. To evaluate the influence of iSNVs on WHO patterns, we iteratively510

sampled 1000 library rows for each of the Alpha, Beta, Delta, and Omicron variants from the511

data matrix X ten times, generating replicates. This process resulted in ten matrices, each512

comprising 4,000 rows. To investigate the effect of iSNVs on sequencing center patterns, we513

used a similar approach, randomly selecting 1000 library rows. However, in this case, we ran-514

domly sampled 1000 library rows from our dataset’s top 10 most frequent sequencing centers515

(Table S3). This process resulted in ten matrices as replicates, each comprising 10,000 rows.516

Within each matrix, xp,l values were set to 0 based on various AAF and S thresholds cut-517

offs. After these two steps, we applied the same method as in Data Visualization to generate518

PHATE and t-SNE visualization of the matrices. Subsequently, we quantified the clustering519

structure of t-SNE and PHATE to derive a PNNz value for each visualization. Specifically,520

a high value of PNNSC, indicating clustering primarily by sequencing center, would suggest521

a dataset enriched for artifacts. Conversely, a high value of PNNWHO, signifying clustering522

primarily by WHO lineage annotations, would suggest a more biologically relevant dataset.523

4.6 Mutational Load524

The mutational load for each library was calculated as the total count of distinct iSNVs525

identified regardless of allele frequencies. Per library, mutational loads were visualized using526

histograms to illustrate the distribution of mutational loads across the dataset. We categorized527

the libraries into different percentiles based on their mutational load, identifying those with528

higher or lower numbers of iSNVs.529
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4.7 Substitution Spectrum Analysis530

To assess the mutational landscape and identify specific patterns that may indicate underlying531

mutational mechanisms or biases in the dataset, we looked at the substitution patterns within532

iSNVs’ different AAF frequencies. First, we categorized intra-host iSNVs into four AAF bins,533

as follows: 5% to 25%, 25% to 50%, 50% to 75%, and 75% to 100%. This categorization was534

based on the evidence for an alternative allele present in the iSNVs. Next, within each AAF535

bin, we classified each iSNV in terms of its ancestral allele and alternative allele to obtain536

12 categories of substitution types. These are A>G, A>C, A>T, C>A, C>G, C>T, G>A,537

G>C, G>T, T>A, T>C, and T>G. This allowed us to analyze the relative contribution of538

each substitution type within each AAF range.539

5 Data and Code Access540

The processing workflow’s code can be found here: https://github.com/HussinLab/IntraHost_541

Covid_Pipeline.git. NCBI accession IDs utilized in this study and the high-quality iSNVs542

identified within each sequencing library are accessible through a Mendeley data repository543

(Mostefai et al. 2024, https://doi.org/10.17632/8nvgtrkzdm.1). We also provide the list544

of recommended 477 genomic positions to mask in the same data repository (see supplemen-545

tary information section 10.3).546
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9 Supplemental Tables and Figures741

Table S1: iSNV Count, Library Count, and Mutational Load

iSNV Count Library Count Mutational Load

Total iSNVs 11,635,231 128,443 91
Consensus iSNVs 3,634,563 128,323 28
De novo iSNVs 8,000,668 128,352 62
S > 1% filtered de novo iSNVs 6,508,783 127,941 51
Masked de novo iSNVs 5,805,486 125,382 46
AAF > 5% filtered de novo iSNVs 468,651 73,729 6
Non-Outlier libraries de novo iSNVs 296,437 72,470 4
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Table S2: Per Country Sequencing Libraries’ Counts Before and After Coverage Filters.

Countries Before Filters (Cl) After Filters (Bl)

Africa

Angola 519 266
Cameroon 210 102
Ethiopia 125 47
Malawi 428 175

Mozambique 287 152
South Africa 3,662 2,527
Zimbabwe 507 342

Other (n < 100) 181 117

Asia

China 115 106
India 437 350
Israel 609 538

Lebanon 367 275
Pakistan 227 149

Other (n < 100) 100 92

Europe

Austria 543 542
Estonia 5,817 4,704
Finland 5,331 4,394
Greece 2,614 2,231
Italy 452 323

Norway 3,376 1,139
Portugal 11,700 10,502
Slovakia 5,982 5,553

Switzerland 379 375
United Kingdom 74,557 69,710
Other (n < 100) 129 101

North America
Canada 625 588
USA 20,880 16,300

Other (n < 100) 91 82

Oceania
Australia 6,837 6,421

Northern Mariana Islands 23 22

South America
Brazil 417 186

Other (n < 100) 10 9

Total 147,537 128,420
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Table S3: Per Sequencing Center Librarie’s Counts Before and After Coverage Filters.

Sequencing Center Before Filters (Cl) After Filters (Bl)

Wellcome Sanger Institute 69,676 65,316
National Institute Of Health DR. Ricardo Jorge 11,700 10,502
Doherty Institute 6,699 6,306
CDC-OAMD 6,431 5,040
Ravi Kant 5,331 4,394
Kwazulu-Natal Sequencing Platform 4,711 2,827
Comenius University in Bratislava 4,648 4,458
University Of Tartu, Estonia 4,104 3,351
Norwegian Institute of Public Health (NIPH) 3,376 1,139
INAB Institute, Certh 2,614 2,231
BROAD, GCID 2,334 1,948
Chan Zuckerberg Biohub 1,971 1,850
Quadram Institute Bioscience 1,859 1,257
UPHL ID 1,853 1,062
Institute of Biomedicine and Translational Medicine 1,713 1,353
Wales Specialist Virology Centre 1,507 1,485
Chan Zuckerberg Biohub 1,364 1,229
Public Health Authority of the Slovak Republic 1,349 1,106
TX-SARS-COV-2 1,324 710
Public Health England (Colindale) 1,142 1,123
DCLS-NGS 1,062 492
California Department of Public Health 982 900
Liverpool Clinical Laboratories 825 741
CanCOGeN CPHLN 612 579
Tel Aviv University 609 538
NYC SARS-COV-2 562 493
CeMM 543 542
New Mexico Department of Health Scientific Laboratory 539 503
Colorado Department of Public Health and Environment 509 463
Gujarat Biotechnology Research Centre 436 349
West of Scotland Specialist Virology Centre, NHSGG 362 362
University Hospital of Basel 336 336
Delaware Public Health Lab 327 299
University of Kwazulu-Natal 277 180
Network for Genomic Surveillance in South Africa 275 274
CDC-PDD 253 222
Utah Public Health lab 233 169
Kwazulu-Natal Research and Sequencing Platform 229 137
UMIGS 223 209
University of Verona 220 188
SEARCH 211 191
Hospital Israelita Albert Einstein 208 0
SciLifeLab Stockholm 164 133
Institute of Clinical Pathology and Medical Research 138 135
LNCC 119 110
Ruijin Hospital, Shanghai Jiao Tong University of Medicine 112 103
Centers for Disease Control and Prevention 100 95
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Figure S1 (\label{figsupp:kNN_WHO_subsampling})

Figure S1: Unveiling WHO Lineage Patterns in SARS-CoV-2 iSNVs with PHATE Visual-
izations and PNNWHO Metric. Boxplots show the distribution of the mean percentage of
nearest neighbours (PNNWHO) from the same WHO lineage annotation across libraries for
each PHATE (A) visualization across the ten replicates from the sub-sampling controlled
experiment (see method section 4.5). Before computing PNNWHO, PHATE visualizations
were generated on matrices containing a consistent sampling of 4,000 libraries from each of
Alpha, Delta, Omicron, and Beta WHO annotated lineages. For PHATE, the first boxplot
represents the expected PNNWHO values by chance, followed by all iSNVs, consensus only
iSNVs, and de novo only iSNVs. The number of nearest neighbours used in this experiment
is k=40.
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Threshold Outlier Libraries PHATE 
(baseline)

t-SNE 
(baseline)

All libraries N/A N/A 36.23% (27.68%) 38.18% (27.68%)

99th percentile 44 iSNVs/l 1,270 33.26% (26.29%) 36.11% (26.28%)

95th percentile 14 iSNVs/l 6,156 33.32% (27.18%) 36.92% (27.24%)

75th percentile 2 iSNVs/l 24,185 32.70% (28.74%) 35.93% (29.69%)

50th percentile 1 iSNV/l 37,934 32.33% (29.00%) 33.03% (29.05%)
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Figure S2 (\label{figsupp:outlier_libraries_kNN})

Figure S2: Analysis of Libraries’ Mutational Load, which is the Number of iSNVs per Library.
A The mutational load distribution across all libraries shows the variability in the number
of iSNVs per library. B zoomed-in view of this distribution, focusing on libraries with up
to 100 iSNVs. This view includes vertical lines to delineate various distribution percentiles.
C A table summarizing the relationship between different outlier detection thresholds and
their impact on library clustering structure on the PHATE visualizations. The table shows
thresholds defined by the number of iSNVs per library, ranging from the 99th percentile
(44 iSNVs/library) to the 50th percentile (1 iSNV/library). For each threshold, the table
indicates the number of libraries classified as outliers and the corresponding percentage of
nearest neighbours from the same WHO lineage (PNNWHO), alongside the expected by
chance PNNWHO value.
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Cluster 1

Cluster 2

Cluster 3

Cluster 4

Figure S3 (\label{figsupp:outlier_libraries_clusters})

Cluster Number of 
Libraries

Sequencing Center
(Count from Center)

% of Center's 
Libraries in our 

dataset

Sample Counts by 
Month/Year

1 164
Doherty Institute

(159)
2.65%

March 2020: 77,
August 2020: 54, 

July 2020: 26, 
April 2020: 5,
May 2020: 1, 

December 2020: 1

2 104
Scilifelab Stockholm

(104)
78.20%

January 2021: 98,
February 2021: 6

3 109
Kwazulu-Natal 

Platform
(106)

3.86%

January 2021: 20,
February 2021: 25,

March 2021: 43,
April 2021: 21

4 81
Ravi Kant Sequencing

(75)
1.84%

May 2021: 42,
February 2021: 15,

June 2021: 10,
April 2021: 5,

March 2021: 5,
January 2021: 3

A B

Figure S3: A: PHATE on the top 1% outlier libraries with the most iSNV count. The clusters
on this PHATE representation were defined using K-means applied to the PHATE object. B:
Table representing per cluster library information.
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10 Supplemental Information742

10.1 Details on Downloading SARS-CoV-2 Genomic Libraries from NCBI743

A total of 147,537 SARS-CoV-2 Illumina amplicon paired-end sequencing reads were down-744

loaded from NCBI, as follows: 51,837 Illumina SARS-CoV-2 sequencing libraries were down-745

loaded from the NCBI database on June 4th, 2021, and another 95,700 Illumina sequencing746

libraries were downloaded on February 12th, 2022. January and February 2020 were severely747

underrepresented compared to the other months (Figure 2A). Most downloaded sequences748

originated from Europe, constituting 75% of the dataset. Among the European sequences,749

63% were obtained from the Wellcome Sanger Institute sequencing center, UK (Table S3), in-750

dicating their significant contribution to the global sequencing efforts. Furthermore, a notable751

number of downloaded libraries came from The Peter Doherty sequencing center, Australia,752

between January and October 2020 (16% of the total libraries Table S3) as they led the753

sequencing effort during that time in that region. Additionally, the dataset was enriched754

with samples sequenced by North American sequencing centers, accounting for 15% of the755

downloaded sequences (Tables S2 and S3). The underrepresentation of samples from January756

and February 2020 reflects a limitation in the available data during the initial stages of the757

pandemic. However, despite the initial disparities in data collection, which reflect the current758

practical challenges faced by the scientific community (Chen et al. 2022), this dataset remains759

highly informative, successfully capturing the global diversity of SARS-CoV-2 throughout the760

later months of 2020 and extending into 2021.761

Out of the total libraries downloaded, 134,879 had a mean coverage C above 100, and a762

total of 138,723 libraries had a breadth of coverage B above 10,000, meaning that at least763

10,000 genomic positions were covered at a depth of 100X or higher (Figure 2). The inter-764

section of both filters allowed us to keep 128,423 high-quality sequencing libraries for further765

analysis. The distributions of the breadth of coverage and mean depth show heterogeneity in766

the coverage of the downloaded sequencing libraries. We also note the grouping of some se-767

quencing centers (e.g. Welcome Sanger Institute in red) and not others (e.g. the CDC’s Office768

of Advanced Molecular Detection - CDC-OAMD), displaying a heterogeneity across sequenc-769

ing centers and within sequencing centers. Because we downloaded a representative sampling770

of the available data on the NCBI database, this coverage distribution likely represents the771
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coverage heterogeneity of the available data on NCBI.772

10.2 Strand Coverage Across the Genome773

We evaluated the variation in strand coverage along the genome in our dataset using the774

Forward Strand Ratio (FSR), which revealed a highly unbalanced distribution across the virus775

sequence (Figure 2C). Only 31% of the viral genome in our dataset has a balanced coverage776

from the forward and reverse read strands. Specifically, 40% of the genome is covered by the777

plus strand, which is the number of genomic positions of the genome with an average forward778

strand ratio above 90%. In contrast, 29% of the genome is covered by the minus strand,779

with an average minus strand ratio above 90%. Thus, strand bias statistics in SARS-CoV-2780

genomes need to consider strand coverage when evaluating if a de novo iSNVs is a stand bias781

artifact, which motivates the development of our strand bias likelihood metric S.782

10.3 Recurrent Strand Bias Artifacts783

To better characterize strand bias artifacts, we analyzed a total of 1,491,885 intra-host single784

nucleotide variants (iSNVs) identified as potential strand bias artifacts, with a likelihood of785

no strand bias below 1% (S¡0.01). We first examined their alternative allele frequency (AAF )786

distribution. The AAF distribution of these excluded iSNVs does not differ significantly from787

that of the other iSNVs, suggesting that strand bias artifacts can happen across a spectrum788

of intra-host frequencies. This confirms that filtering based solely on AAF is insufficient to789

eliminate strand bias artifacts.790

Several genomic positions were found to be recurrent within these putative strand bias791

artifacts. We computed the expected number of libraries with strand bias artifacts at a given792

position, which has a mean of 4 and a 99th percentile of 68 libraries. We identified 486 genomic793

positions that have a strand bias artifact reported in more than 68 libraries, labelling them as794

recurrent strand bias artifacts, which we masked in our analyses across all libraries. To ensure795

the robustness of iSNV analyses and to prevent the inclusion of recurrent spurious iSNVs, we796

recommend evaluating and possibly masking these genomic positions in future SARS-CoV-2797

intra-host studies.798
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10.4 Sub-sampling experiments to balance WHO variants799

In our dataset, Alpha and Delta are overrepresented compared to other SARS-CoV-2 variants,800

which may cause biases in the analysis results since unbalanced sampling can influence cluster801

formation and PNNWHO values (see, for example, Figure 3A, which distinctly marks Alpha802

and Delta as dominant clusters). To address this, we conducted controlled sub-sampling803

experiments, selecting 1,000 libraries each from the Alpha, Beta, Delta, and Omicron variants804

(see Method section 4.5), aiming to mitigate variant sampling bias on PNNWHO values in805

the PHATE representation of iSNV subsets. We evaluated the clustering by WHO lineage806

across three iSNV sets: unfiltered raw iSNVs, consensus iSNVs, and de novo iSNVs (Figure807

S1). The raw and consensus iSNV datasets show high PNNWHO values, indicating a strong808

lineage-specific signature, primarily driven by frequent lineage-defining mutations, even when809

samples per WHO variant are balanced. Conversely, de novo iSNVs exhibit lower PNNWHO810

values, indicating a subtler lineage-based structure but still above baseline, underscoring the811

lineage-specific biological significance of emerging mutations. These controlled subsampling812

experiments thus replicate our main findings with the full dataset (Figure 4). Therefore, the813

lineage-specific signatures observed in our study are not a result of the uneven sampling of814

WHO variants.815

10.5 t-SNE Results Are Comparable to PHATE816

In this section, we present results from t-SNE (t-Distributed Stochastic Neighbor Embedding)817

analysis of SARS-CoV-2 genomic data, complementing the PHATE results found in the result818

section (2). The method t-SNE is a machine learning algorithm used for dimensionality819

reduction, offering an alternative approach to PHATE.820

The t-SNE representation of the 128,423 high-quality sequencing libraries reveals dis-821

tinct clusters by WHO lineage for both raw and consensus iSNV subsets, consistent with822

PHATE’s findings. For raw iSNVs, the Proportion of Nearest Neighbors (PNNWHO) for823

t-SNE is 99.43%, closely aligned with PHATE’s 98.39%. Similarly, for consensus iSNVs, t-824

SNE’s PNNWHO of 99.05% parallels PHATE’s 99.37%, highlighting both methods’ consistent825

ability to identify lineage-specific mutations across the iSNV sets. Conversely, de novo iSNVs826

(representing emerging mutations within the host) show less pronounced lineage-specific than827

consensus iSNVs clustering in t-SNE representation, with a PNNWHO value of 59.37%. This828
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suggests a deviation from the strong lineage alignment observed in raw and consensus iSNVs,829

indicating that while de novo iSNVs still correlate with lineage structure more than baseline,830

the association is less direct. The structure observed in de novo iSNVs through t-SNE com-831

plements PHATE’s analysis, demonstrating consistent underlying data patterns regardless of832

the representation method used.833

Using the 8,000,668 unfiltered de novo iSNVs, both t-SNE and PHATE visualizations re-834

vealed significant sequencing center batch effects, with t-SNE showing slightly higher PNNSC835

values (66.50%) compared to PHATE (62.31%). This indicates that both dimensionality re-836

duction techniques captured the influence of sequencing center-specific artifacts within the de837

novo iSNV dataset. Efforts to refine the dataset and mitigate these artifacts involved apply-838

ing thresholds on the strand bias metric (S) and the Alternative Allele Frequency (AAF ).839

These measures effectively reduced sequencing center-specific artifacts, as evidenced by de-840

creased PNNSC values in both visualization methods after applying the filters, with the841

t-SNE value (38.18%) slightly higher than PHATE (36.23%). Applying the filters effectively842

reduced sequencing center-specific artifacts, as evidenced by decreased PNNSC values in both843

representation methods.844

Similarly to PHATE, we also computed the PNNSC values in t-SNE representation after845

sequentially removing the top 1%, 5%, and 25% of the libraries with the most iSNV counts846

(Figure S2B). As opposed to PHATE, the PNNSC value of t-SNE did not drastically decrease847

after the removal of the top 1% of our outliers. However, the PNNSC values for both t-SNE848

and PHATE only met after the exclusion of more libraries down to only keeping libraries with849

one iSNV (Figure S2B, 50th percentile), underlining the stronger impact of outlier libraries850

on t-SNE compared to PHATE.851

Similar to the approach used with PHATE, we calculated the PNNSC values for t-SNE852

after removing the top 1%, 5%, and 25% of libraries based on iSNV counts (Figure S2B).853

Unlike PHATE, the PNNSC for t-SNE did not significantly decrease with the removal of the854

top 1% of libraries. Both t-SNE and PHATE PNNSC values converged after removing more855

libraries, ultimately comparable for their PNNSC values only when retaining those with a856

single iSNV (Figure S2B, 50th percentile). This indicates that t-SNE is more susceptible to857

bias from outlier libraries compared to PHATE.858

This overall consistency between dimensionality reduction methods serves as compelling859
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evidence that the data’s underlying structure is method-independent, suggesting that both860

methods could be reliably applied to similar datasets to help inform future pre-processing861

strategies in viral genomics. This alignment helps validate our pre-processing strategies in862

viral genomics, demonstrating the robustness of our observations and the general applicability863

of these techniques to analyze viral genomic data.864
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