Por favor, use este identificador para citar o enlazar este ítem: http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/8565
Covid-19 prevalence estimation by random sampling in the wider population - Optimal sample pooling under varying assumptions about true prevalence
Ola Brynildsrud
Acceso Abierto
Atribución-NoComercial-SinDerivadas
https://doi.org/10.1101/2020.05.05.20075275
https://www.medrxiv.org/content/10.1101/2020.05.05.20075275v1
The number of confirmed Covid-19 cases in a population is used as a coarse measurement for the burden of disease. However, this number depends heavily on the sampling intensity and the various test criteria used in different jurisdictions. A wide range of sources indicate that a large fraction of cases go undetected. Estimates of the true prevalence of Covid-19 can be made by random sampling in the wider population. Here we use simulations to explore confidence intervals of prevalence estimates under different sampling intensities and degrees of sample pooling.
bioRxiv
08-05-2020
Preimpreso
Inglés
Público en general
VIRUS RESPIRATORIOS
Versión publicada
publishedVersion - Versión publicada
Aparece en las colecciones: Materiales de Consulta y Comunicados Técnicos

Cargar archivos: