Por favor, use este identificador para citar o enlazar este ítem:
http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/8565
Covid-19 prevalence estimation by random sampling in the wider population - Optimal sample pooling under varying assumptions about true prevalence | |
Ola Brynildsrud | |
Acceso Abierto | |
Atribución-NoComercial-SinDerivadas | |
https://doi.org/10.1101/2020.05.05.20075275 | |
https://www.medrxiv.org/content/10.1101/2020.05.05.20075275v1 | |
The number of confirmed Covid-19 cases in a population is used as a coarse measurement for the burden of disease. However, this number depends heavily on the sampling intensity and the various test criteria used in different jurisdictions. A wide range of sources indicate that a large fraction of cases go undetected. Estimates of the true prevalence of Covid-19 can be made by random sampling in the wider population. Here we use simulations to explore confidence intervals of prevalence estimates under different sampling intensities and degrees of sample pooling. | |
bioRxiv | |
08-05-2020 | |
Preimpreso | |
Inglés | |
Público en general | |
VIRUS RESPIRATORIOS | |
Versión publicada | |
publishedVersion - Versión publicada | |
Aparece en las colecciones: | Materiales de Consulta y Comunicados Técnicos |
Cargar archivos: