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ABSTRACT 
 
The number of confirmed Covid-19 cases in a population is used as a coarse measurement for 
the burden of disease. However, this number depends heavily on the sampling intensity and the 
various test criteria used in different jurisdictions. A wide range of sources indicate that a large 
fraction of cases go undetected. Estimates of the true prevalence of Covid-19 can be made by 
random sampling in the wider population. Here we use simulations to explore confidence 
intervals of prevalence estimates under different sampling intensities and degrees of sample 
pooling.  
 
 
INTRODUCTION 
 
It is widely accepted that a large fraction of Covid-19 cases go undetected. A crude measure of 
population prevalence is the fraction of positive tests at any given date. However, this is subject 
to large ascertainment bias since tests are typically only ordered from symptomatic cases, 
whereas a large proportion of infected might show little to no symptoms ​[1,2]​. Non-symptomatic 
infections can still shed the SARS-CoV-2 virus and are therefore detectable by PCR-based 
tests. It is therefore possible to test randomly selected individuals to estimate the true disease 
prevalence in a population. However, if the disease prevalence is low, very little information is 
garnered from each individual test. Under such situations it can be advantageous to pool 
individual patient specimens into a single sample ​[3]​. Pooling strategies can be efficient to 
increase the test capacity and are less wasteful with ingredients required for the reverse 
transcriptase PCR test. 
 
 
METHODS 
 
We simulated the effect sample pooling had on prevalence estimates under five different 
settings for true prevalence . We started by generating a population of 500,000 individuals andp  
then let each individual have  probability of being infected at sampling time. The number ofp  
patient samples collected from the population is denoted by , and the number of patientn  
samples that are pooled into a single well is denoted by . The total number of pools are thus k k

n
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, which we call . The number of positive pools in an experiment is termed .We estimate  atm x p  
each parameter combination by replicating the experiment 10,000 times and report here the 
2.5% and 97.5% quantiles of the distribution of .p   
 
Explored parameter options: 
p∈ {0.001, 0.003, 0.01, 0.03, .0}   1  
n∈ {200, 500, 1000, 1500, 2000, 3000, 5000}       
k ∈ {1, , 5, 7, 0, 13, 15, 20, 25, 30, 40, 50, 70, 100, 200}3   1            
 
We considered the specificity ( ) of a PCR-based test to be 1.0, but include simulations with theθ  
value set to 0.99. Test sensitivity depends on a range of uncontrollable factors such as virus 
quantity, sample type, time from sampling, laboratory standard and the skill of personnel ​[4]​. 
There have also been reports of it varying with pooling level ​[5]​. For the purposes of this study, 
we fixed the sensitivity ( ) at 0.95, irrespective of the level of pooling. This estimate is ratherη  
low, which would suggest that we are somewhat overestimating the uncertainty of . However,p  
since it is possible that tests will be carried out under suboptimal and non-standardized 
conditions we prefer to err on the side of caution. 
 
The formula of Cowling ​et al.​, 1999 ​[6]​ was used to calculate  from a single sample:p  
 

 p = 1 − ( η − xm
θ + η− 1) k

1

 
 
Note that the number of positive pools, , can be approximated in infinite populations as ax  
stochastic variable subject to a binomial distribution with parameters  and , where the latterm P  
is the probability that a single pool will test positive. A positive pool can arise from two different 
processes: There can be one or more true positive samples in the pool and they are detected, 
or there can be no true positive samples in the pool, but the test gives a false positive result: 
 

(p, ) (1 )η (1 ) (1 )P k =  − (1 )− p k +  − p k − θ  
 
Closer inspection of the above formula reveals something disheartening: In low-prevalence 
scenarios, and for typical values of test sensitivity and specificity, most positive test results will 
be false positives.  
 
 
Freedom from disease 
 
Pooled sampling can also be used to efficiently assert freedom from disease with a certain 
probability. If the population is free from the disease, then we find no true positive specimen in 
our sampling. The question then becomes how many samples we need to take from a 
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population with prevalence  to ensure that the probability of sampling at least one singlep  
positive patient is  or higher. We calculate this number using the formula of Christensen andα  
Gardner, 2000 ​[7]​: 
 

n ≥ log(1−(1−α))
log(θ(1−p) + (1−η)p)  

 
For tests with perfect specificity, we do not have to worry about false positives, and if any pools 
come out as positive we classify the population as not free from disease. The formula of 
Christensen and Gardner can be expanded to the case with pooled sampling: 
 

m ≥ log(1−(1−α))
log((1−p) θ + (1−(1−p) )(1−η)k k  

 
 
RESULTS AND DISCUSSION 
 
Estimates of prevalence 
 
In the following figures, we use simulations to calculate the central 95% estimates of . Notep  
that in some parameter combinations, the wavy shape of some curves, particularly for the lower 
sample sizes 200 and 500, indicates that the precision can actually increase with higher levels 
of pooling. This is partly due to stochasticity of these results and partly to the discrete nature of 
each estimate of . That is,  is not continuous and for limited pool sizes miniscule changes inp p  
the number of positive pools can affect  quite a bit.p   
 
For example, if you take 200 samples and go with a pool size of 100, there are only three 
potential outcomes: Both pools are negative, in which case you believe the prevalence is 0; One 
pool is positive and the other negative, in which case you estimate  as approximately 0.007 ifp  
the test sensitivity​ ​is 0.95; Or both pools are positive, in which case the formula of Cowling ​et al. 
does not provide an answer because the fraction of positive pools is higher than the test 
sensitivity. This formula is only intended to be used when the fraction of positive pools is much 
lower than the test sensitivity.  
 
In general, very high levels of pooling are not appropriate since, depending on the true 
prevalence, the probability that every single pool has at least one positive sample approaches 1. 
On the other hand, in low prevalence settings, it can be appropriate to pool hundreds of 
samples, but the total number of samples required to get a precise estimate of the prevalence is 
much higher. Thus, decisions about the level of pooling need to be informed by the prior 
assumptions about prevalence in the population, and there is a prevalence-dependent sweet 
spot to be found in the tradeoff between precision and workload. 
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Fig. 1 ​ - True prevalence = 0.1%: 

 
Fig. 2 ​ - True prevalence = 0.3%: 

 
 
Fig. 3 ​ - True prevalence = 1%.  
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Fig. 4 ​ - True prevalence = 3%: 

 
Fig. 5 ​ - True prevalence = 10%.  
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Imperfect specificity 
 
Although there have not been many reports of cross-reactivity between Covid-19 and other 
viruses in the most commonly used RT-PCR tests, it can be helpful to know how the chance of 
false positives can impact on the effect of sample pooling. It is also possible that false positives 
can arise from human errors in the lab. In the following, we repeat the above exercise with 
specificity ( ) set to 0.99. This creates a seemingly paradoxical situation in which higher levelsθ  
of sample pooling often leads to more precise prevalence estimates. This is because many, in 
some cases most, pools are positive without actually containing a single true positive sample, 
leading to inflated estimates of the prevalence. When the level of pooling goes up, the 
probability that a positive pool contains at least one true positive sample increases, which 
increases the total precision. 
 
Fig. 6 ​ - True prevalence = 0.1%, test specificity = 0.99 
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Fig. 7 ​- True prevalence = 0.3%, test specificity = 0.99 

 
Fig. 8 ​ - True prevalence = 1%, test specificity = 0.99 
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Fig. 9 ​ - True prevalence = 3%, test specificity = 0.99 

 
Fig. 10 ​ - True prevalence = 10%, test specificity = 0.99 
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Freedom from disease 
 
Sample pooling can also be of great benefit in order to establish freedom from disease. True 
freedom in a population is not possible to assert without sampling every last individual. 
However, we can establish how many samples we need in order to have at least 1 )%  ( − α  
probability of getting a positive sample if the true prevalence was . For example, from figure 6p  
we can see that if we sample 60 patients and the true prevalence is 0.06, we would be 95% 
certain that at least one of our samples came out positive. That is, if the true prevalence in the 
source population was exactly 0.06, we would only expect to get 60 negative samples by 
chance 5% of the time. A common interpretation of this is that if all pools test negative, we can 
be 95% certain that the true prevalence in the source population is 0.06 or lower. 
 
Note that when the specificity is 1.0, we will never get a positive from a completely disease-free 
population no matter how many samples we take. If the test specificity is less than 1.0, the 
sample size needed to ensure  probability of getting at least one positive sample has1 )%  ( − α  
an upper bound even when the population is free of disease, although this will of course be a 
false positive. 
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Fig. 11 ​ - Freedom from disease. 

 
Fig. 12 ​ - Freedom from disease, specificity 0.99 

 
 
SUMMARY 
 
Attempts to estimate the true prevalence of Covid-19 in presumptive low-prevalence or 
disease-free populations can benefit from sample pooling strategies. Such strategies have the 
potential to greatly reduce sampling-associated costs with only slight decreases in the precision 
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of prevalence estimates. If the prevalence is low, it is generally appropriate to pool even 
hundreds of samples, but the total sample count needs to be high in order to get reasonably 
precise estimates of the true prevalence. On the other hand, if the prevalence is high there is 
little to be gained by pooling more than 15 samples. 
 
 
AVAILABILITY OF CODE 
 
Code written for this project is available at 
https://github.com/admiralenola/pooledsampling-covid-simulation ​. All simulations and plots were 
created in R version 3.2.3 ​[8]​. 
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