Por favor, use este identificador para citar o enlazar este ítem:
http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/8511
Fitting SIR model to COVID-19 pandemic data and comparative forecasting with machine learning | |
Mouhamadou Aliou Mountaga Tall Baldé | |
Acceso Abierto | |
Atribución-NoComercial-SinDerivadas | |
https://doi.org/10.1101/2020.04.26.20081042 | |
https://www.medrxiv.org/content/10.1101/2020.04.26.20081042v1 | |
In this work, we use a classical SIR model to study COVID-19 pandemic. We aim, to deal with the SIR model fitting to COVID-19 data by using different technics and tools. We particularly use two ways: the first one start by fitting the total number of the confirmed cases and the second use a parametric solver tool. Finally a comparative forecasting, machine learning tools, is given. | |
bioRxiv | |
01-05-2020 | |
Preimpreso | |
Inglés | |
Público en general | |
VIRUS RESPIRATORIOS | |
Versión publicada | |
publishedVersion - Versión publicada | |
Aparece en las colecciones: | Materiales de Consulta y Comunicados Técnicos |
Cargar archivos:
Fichero | Tamaño | Formato | |
---|---|---|---|
Fitting SIR model to COVID-19 pandemic data and comparative forecasting with machine learning.pdf | 751.78 kB | Adobe PDF | Visualizar/Abrir |