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Abstract

In this work, we use a classical SIR model to study COVID-19 pandemic. We aim to deal with

the SIR model �tting to COVID-19 data by using di�erent technics and tools. We particularly

use two ways: the �rst one start by �tting the total number of the con�rmed cases and the

second use a parametric solver tool. Finally a comparative forecasting, machine learning tools,

is given.
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I. Introduction

T
he Coronavirus disease 2019 (COVID-19) epidemic has to get the attention of all scientists

around the world. The COVID-19 appears in November 2019 in Wuhan, central China. In

March 2020, the epidemic was reclassi�ed as a pandemic by the World Health Organization (WHO).

The COVID-19 pandemic is spreading rapidly in many other countries. Measures, limiting human-

to-human contact (social distancing, barrier measures, con�nement), are taken to stem the spread,

causing a sudden slowdown in the world economy and a stock market crash on March 12, 2020. The

COVID-19 is contagious with human-to-human transmission. The incubation period is generally

between two and fourteen days, with an average of �ve days.

Many researchers have used new or classical models of infectious diseases to describe, study or

predict the evolution of COVID-19 pandemic.

In this work, we aim to use the well known classical SIR model[Anderson and May, 1991], [Hethcote, 2000],

to �t it to world data of COVID-19. We discuss and apply di�erent methods and show numerical

results. The methods consist in �rst to use the work in [Liu, Magal, Seydi and Webb, 2020] which

start by �tting the total number of the con�rmed cases and in second to use parametric solver.

SIR stands for �Susceptible-Infected-Removed�. If we consider that all removed individuals are the

recovered individuals, then we can say �Susceptible-Infected-Recovered�.

In this paper, we �rst introduce the classical mathematical SIR models we use to �t COVID-19

data. In the second we present di�erent mechanisms we use to �t the data. Then we show numerical

results. And �nally, we show some prediction for Senegal of the SIR models we study compared

with forecasting using machine learning.
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II. classical SIR model

The classical SIR model is given as follow:

dS

dt
= −βS(t)I(t)

N

dI

dt
=
βS(t)I(t)

N
− γI(t)

dR

dt
= γI(t)

(1)

with the dependent variables S(t), I(t), R(t) being respectively the number of susceptible individu-

als at time t, the number of infectious individuals at time t and the number of recovered individuals

at time t. In addition, the unknowns S(t), I(t), R(t) satisfy N = S(t) + I(t) +R(t). N is the total

number of individuals.

The initial conditions are S(0) = S0 ≥ 0, I(0) = I0 ≥ 0 and R(0) = R0 ≥ 0.

Some parameters must be presented: β is the contact rate, 1/γ is the average infectious period,

R0 = β/γ is the basic reproduction number.

The SIR model satis�es some properties:

• The susceptible function S(t) decreases to S∞ = S0 exp(−R0

N
(R∞ −R0)) as t→∞.

• The recovered function R(t) increases up to R∞ = N − S0 exp(−R0

N
(R∞ −R0)) as t→∞.

• If R0 > N/S0, then I(t) increases up to a maximum value Imax = I0+S0−(1+ln(
R0S0

N
))
N

R0
.

• If R0 < N/S0, then I(t) decreases to 0.

Remark II.1. At the outset of an epidemic, nearly everyone (except the infected case) is susceptible.

So we can say that S0 ≈ N and then we can replace N/S0 by 1.

It is also possible to couple the SIR model with other di�erential equations like death equation

to study the number of death due the epidemic disease or economic model equations to study the

impact of the epidemic disease on the economy. To couple the SIR model with a death equation,

we consider the death rate µ due to the infection. So the system is given by:

dS

dt
= −βS(t)I(t)

N

dI

dt
=
βS(t)I(t)

N
− γI(t)− µI(t)

dR

dt
= γI(t)

dD

dt
= µI(t)

(2)

with D being the number of death due to the infection. Then the total removed is R(t) +D(t) and

N = S(t) + I(t) +R(t) +D(t).
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III. Methods

i. Fitting function to data

The starting point of the work is to �nd a function that �ts the data of total con�rmed cases. As

in [Liu, Magal, Seydi and Webb, 2020], we set the total number of infectious cases by:

TNI(t) =

∫ t

t0

I(s)ds. (3)

The total number of infectious cases function, that �t the data, can be written as TNI(t) =

b exp(ct) − a. Where a, b, c are parameters to estimate by using the least square method. Then

with TNI(t) we can obtain information on the unknown functional variables and parameters of the

SIR model.

After calculation as in [Liu, Magal, Seydi and Webb, 2020], we obtain:

• t0 =
ln(a)− ln(b)

c
.

• I(t) = I(t0) exp(c(t− t0)), with I(t0) = I0 = ac.

• R(t) =
γ(I(t)− I0)

c
.

• β = N
c+ γ

S0
.

The simulation results are given in subsection i, �gure 1a, 1b, 1c and 1d. Also the values of the

parameters β and γ are given.

We consider now that at a time T some measures are taken like social distancing, half or full

con�nement. It can be interpreted as the contact rate is reduced by some factor or at a time

point, the contact rate is close to 0. Indeed in [Liu, Magal, Seydi and Webb, 2020], the authors

considered that the transmission of COVID-19 from infectious to susceptible individuals stopped

after strong measures has been taken in China. Then they have �xed the contact rate to 0. In

[Lauro, Kiss and Miller, 2020], the authors considered that the contact rate is reduced by some

factor when a social distancing intervention is introduced with a certain duration. Then they have

replaced β by (1 − c)β. It is also possible to consider that β will decrease depending on time like

in [Liu, Magal, Seydi and Webb, 2020], where authors has considered an exponential decreasing

function of time.

In this work, we consider that the contact rate decreases progressively to 0. Then we choose

continuous function with a slow decrease to describe the contact rate starting at the date-time of

the measures.

We propose two types of function for β noted β̃(t).

The �rst one is :

β̃(t) =

{
β if t ∈ [t0, T ]

β(
T

t
)δ/p if t > T,

(4)

where δ and p are parameters to choose. The second one is:

β̃(t) =


β if t ∈ [t0, T ]

β −
(ln(Tt ))κ

q
if t > T,

(5)

where κ and q are parameters to choose.
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Then replacing β by β̃(t) in the SIR model 1, we obtain:

dS

dt
= − β̃(t)S(t)I(t)

N

dI

dt
=
β̃(t)S(t)I(t)

N
− γI(t)

dR

dt
= γI(t)

(6)

By solving (6), we obtain the new expressions of TNI(t), I(t) and R(t). We show the results

in subsection i.

Remark III.1. 1. The values of the parameters δ, p, κ and q can be �xed such that β̃(t) de-

creases slowly.

2. Since β̃ depends on time, we must always consider values of t such that β̃ remains positive.

3. β̃ given by 4 is positive for all time while β̃ given by 5 is positive only if t ∈ [0, T exp((βq)1/κ)].

ii. Fit to data with scaling

When there is not enough data the �t is generally di�cult since the maximal values of the dependent

variables can be very huge. For example, S0 depends on the total population and generally S0 ≈ N ,

with N the size of a chosen sample of the population. In SIR models, it is generally possible to

choose di�erent population sizes with similar characteristics. If we have characteristic measures we

can make the model dimensionless so that the quality of the results is always good. Then we scale

the SIR model to the data by using scaling [Langtangen and Pedersen, 2016].

Let us �x the following constant characteristics size: tc, Sc, Ic, Rc respectively of the time t,

the susceptible S(t), the infected I(t) and the recovered R(t). Then the dimensionless variables

t̄, S̄, Ī, R̄ are given by t = t̄tc, S = S̄Sc, I = ĪIc, R = R̄Rc.

Replacing in (1) and calculating, we obtain the scaled system:

dS̄

dt
= −βIctc

N
S̄(t)Ī(t)

dĪ

dt
=
βSctc
N

S̄(t)Ī(t)− γtcĪ(t)

dR̄

dt
= γ

Ictc
Rc

Ī(t)

(7)

Remark III.2. For the adjusting of the data, we choose tc = tdmax, with t
d
max being the last time

of the data.
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The scaled system can be written, by dropping the �-�, as follows:

dS

dt
= −β̃1S(t)I(t)

dI

dt
= β̃2S(t)I(t)− γ̃1I(t)

dR

dt
= γ̃2I(t)

(8)

with β̃1 =
βIctc
N

, β̃2 =
βSctc
N

, γ̃1 = γtc and γ̃2 = γ
Ictc
Rc

.

Remark III.3. By choosing the characteristics such that Sc = Ic = Rc, we obtain β̃1 = β̃2 and

γ̃1 = γ̃2. And then we get a new SIR model.

iii. Parametric solve

We estimate the parameters β and γ by using parametric solver in Mathematica. With the para-

metric solver, we solve the SIR model (2) with solutions depending on the parameters we want

to estimate such that the model �ts the data. Then plotting the parametric solution for di�erent

values of β and γ, �nally, give a �t. Parametric solver typically solve di�erential equations by going

through several di�erent stages, depending on the type of equations.

iv. Machine learning

Machine learning is programming computers to optimize a performance criterion using example

data or past experience. We have a model de�ned up to some parameters, and learning is the

execution of a computer program to optimize the parameters of the model using the training data

or past experience. The model may be predictive to make predictions in the future, or descriptive

to gain knowledge from data or both.

Machine learning uses the theory of statistics in building mathematical models because the core

task is making inferences from a sample.(See[Alpaydin, 2010]).

Then machine learning can be used for the estimation of parameters of an epidemic model. We can

go deep by doing data mining since we have massive world data. We can use machine learning to

learn about the worldwide data of pandemic COVID-19 and then to predict the future evolution of

the disease.

We can also try to learn on the spatial distribution and progression of the disease and predict the

location susceptible to be a high level of risk.

In this work, we just use a machine learning tool to learn on small data of Senegal's COVID-19

cases and then to predict the evolution in future days. We use it as a comparison with the other

forecasts based on the work we do in this paper.

IV. Numerical simulations

i. The data

In this subsection we show table of data we use for simulation. The tables 1, 2 and 3 give data

respectively of Senegal, China and France. Data for Senegal is obtained from daily press releases on
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the COVID-19 from the Ministry of Health and Social Action (http://www.sante.gouv.sn/) and the

data for China and France come from [Wolfram Research]. [Wolfram Research] provide estimated

con�rmed COVID-19 infection trend by country or region, based on WHO, U.S. CDC, ECDC,

China CDC (CCDC), NHC and DXY. The source dataset is compiled daily by Johns Hopkins

CSSE. For details see: https://github.com/CSSEGISandData/COVID-19/issues.

Table 1: COVID-19 data for Senegal: 2020 march 02-31.

Date 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

New cases 1 1 1 1 0 0 0 0 0 1 5 11 3 2 1 4 5 2 9 9 11 12 7 13 6 14 11 12 20 13

Total cases 1 2 3 4 4 4 4 4 4 5 10 21 24 26 27 31 36 38 47 56 67 79 86 99 105 119 130 142 162 175

Recovered cases 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 2 5 5 5 5 8 8 9 9 11 18 27 28 40

Death cases 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 2: COVID-19 data for Hubei, China: 2020 January 22- Marsh 31.

Date 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Infected cases 399 399 494 689 964 1302 3349 3341 4651 5461 6736 10532 12722 15677 18483 20677 23139 24881

Recovered cases 28 28 31 32 42 45 80 88 90 141 168 295 386 522 633 817 1115 1439

Death cases 17 17 24 40 52 76 125 125 162 204 249 350 414 479 549 618 699 780

Date 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Infected cases 26965 28532 29659 29612 43437 48175 49030 49847 50338 50633 49665 48510 48637 46439 46395 45044 43252

Recovered cases 1795 2222 2639 2686 3459 4774 5623 6639 7862 9128 10337 11788 11881 15299 15343 16748 18971

Death cases 871 974 1068 1068 1310 1457 1596 1696 1789 1921 2029 2144 2144 2346 2346 2495 2563

Date 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

Infected cases 41603 39572 36829 34617 32610 30366 28174 25904 23972 22628 21207 19486 18247 16993 15593 14407 13171

Recovered cases 20969 23383 26403 28993 31536 33934 36208 38557 40592 42033 43500 45235 46488 47743 49134 50318 51553

Death cases 2615 2641 2682 2727 2761 2803 2835 2871 2902 2931 2959 2986 3008 3024 3046 3056 3062

Date 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

Infected cases 11755 10421 9557 8685 7751 6988 6285 5715 5223 4765 4317 3827 3431 2895 2526 2049 1726 1461

Recovered cases 52960 54288 55142 56003 56927 57682 58382 58946 59433 59882 60324 60811 61201 61732 62098 62570 62889 63153

Death cases 3075 3085 3099 3111 3122 3130 3133 3139 3144 3153 3160 3163 3169 3174 3177 3182 3186 3187

ii. The function �t

Here we show simulations related to the subsection i of section III. The formula of TNI(t) is given

by TNI(t) = b exp(ct) − a, with a = 13.9324, b = 9.61779 and c = 0.100095 (�gure 1a). We

use γ = 1/7 and then we obtain: t0 = 3.7051, I0 = 1, 39456. The total population of Senegal is

N = 16743927 from Senegal Population (2020) - Worldometer (www.worldometers.info) and then

we obtain S0 = N − I0. Since S0 ≈ N we simplify the calculation and obtain β = 0, 242957.

Now we consider the time of the measures as 2020, March 23. Then T = 23. For β̃ given by (4),

results are shown by �gures 2a, 2c and 2e. For β̃ given by (5), results are shown by �gures 2b, 2d
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Table 3: COVID-19 data for France: 2020 January 22- Marsh 31.

Date 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Infected cases 0 0 2 3 3 3 4 5 5 5 6 6 6 6 6 6 6 11

Recovered cases 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Death cases 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Date 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Infected cases 11 11 11 9 9 9 7 7 7 7 7 7 7 7 7 7 2

Recovered cases 0 0 0 2 2 2 4 4 4 4 4 4 4 4 4 4 11

Death cases 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

Date 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

Infected cases 5 25 44 86 116 176 188 269 359 632 926 1095 1178 1739 2221 2221 3570

Recovered cases 11 11 11 12 12 12 12 12 12 12 12 12 12 12 12 12 12

Death cases 2 2 2 2 2 3 4 4 6 9 11 19 19 33 48 48 79

Date 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

Infected cases 4366 4396 6473 7492 8883 10616 12150 13708 13144 16796 17923 20002 22511 25269 29561 30366 33599 39161

Recovered cases 12 12 12 12 12 12 12 12 2200 2200 3281 3900 4948 5700 5700 7202 7927 9444

Death cases 91 91 148 148 148 243 450 562 674 860 1100 1331 1696 1995 2314 2606 3024 3523

and 2f.

We do the same as in the paragraphs above for France. TNI(t) = b exp(ct)−a, with a = 1, b = 0.88

and c = 0.158 (�gure 3a). We use γ = 1/7 and then we obtain: t0 = 0.809, I0 = 0.158. The total

population of France isN = 65241903 from France Population 2020 (https://worldpopulationreview.com)

and then we obtain S0 = N−I0. Since S0 ≈ N we simplify the calculation and obtain β = 0.300857.

For France, we consider the time of the measures as 2020, March 17. Then T = 56. For β̃ given by

(4), results are shown by �gures 4a and 4b. For β̃ given by (5), results are shown by �gures 5a and 5b.
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(a) Fit with data of the total cases:
TNI(t) is the blue line and the data
are the red dotted.

(b) Plot of TNI(t)(red line) with data of
total cases(red dotted), the I(t)(blue
line) with the data of new cases(blue
dotted) and R(t)(green line) with the
data recovered cases(green dotted).

(c) Plot of TNI(t)(red line) with data
of total cases(red dotted) and the
I(t)(blue line) with the data of new
cases(blue dotted).

(d) Plot of TNI(t)(red line) with
data of total cases(red dotted)
and R(t)(green line) with the data
recovered cases(green dotted).

Figure 1: Plot of the total number of case data using the SIR model(1) and compared with plot of Senegal's

data. On the abscissa axis, the graduation 30 represents 2020, March 31.
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(a) Plot of β̃(t) (4), with δ = 15 and
p = 10.

(b) Plot of β̃(t) (5), with κ = 1/3 and
q = 10.

(c) Plot of TNI(t) with β (red line)
TNI(t) with β̃ (yellow line). δ = 15
and p = 10.

(d) Plot of TNI(t) with β (red line)
TNI(t) with β̃ (yellow line). κ =
1/3 and q = 10 .

(e) Plot of TNI(t) with β (red line),
TNI(t) with β̃ (yellow line) and data
of Senegal . δ = 15 and p = 10.

(f) Plot of TNI(t) with β (red line),
TNI(t) with β̃ (yellow line) and data
of Senegal . κ = 1/3 and q = 10.

Figure 2: On the top: plot of the contact rate β̃(t) (4) with δ = 15 and p = 10 and β̃(t) (5) with κ = 1/3

and q = 10. In the left for �gures related to β̃(t) (4) and in the right for �gures related to β̃(t)

(5): we plot the two functions TNI(t) compared with plot of Senegal's data in table 1 completed

until April 06. On the abscissa axis, the graduation 30 represents 2020, March 31. Then 2020,

April 06 is the graduation 36.
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(a) Fit with data of the total cases:
TNI(t) is the blue line and the data
are the red dotted.

(b) Plot of TNI(t)(red line) with
data of total cases(red dotted)
and R(t)(green line) with the data
recovered cases(green dotted).

Figure 3: Plot of the total number of case data using the SIR model(1) and compared with plot of France's

data. On the abscissa axis, the graduation 70 represents 2020, March 31.

(a) Plot of TNI(t) with β (red line)
TNI(t) with β̃ (yellow line). δ = 1
and p = 1/2.

(b) Plot of TNI(t) with β (red line),
TNI(t) with β̃ (yellow line) and
data of Senegal . δ = 1 and p = 1/2.

Figure 4: Plot of the contact rate β̃(t) (4) with δ = 1 and p = 1/2. Plot of the two functions TNI(t)

compared with plot of France's data in table 3 completed until April 06. On the abscissa axis,

the graduation 70 represents 2020, March 31.

(a) Plot of TNI(t) with β (red line)
TNI(t) with β̃ (yellow line). κ =
1/4 and q = 13 .

(b) Plot of TNI(t) with β (red line),
TNI(t) with β̃ (yellow line) and
data of Senegal . κ = 1/4 and
q = 13.

Figure 5: Plot of the contact rate β̃(t) (5) with κ = 1/4 and q = 13. Plot the two functions TNI(t)

compared with plot of France's data in table 1 completed until April 06. On the abscissa axis,

the graduation 70 represents 2020, March 31. Then 2020, April 06 is the graduation 76.
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iii. The �t by scaling

The scaled SIR model(8) is plotted in �gure 6a. And in �gure 6b we �t with the data of Senegal

in table 1. We �x the characteristic parameters as: tc = 30 which is the number of days of the

data of Senegal in table 1, Ic = Sc = Rc = 1000. We use β = 5.0753, γ = 1/45 to obtain

β1 = β2 = 0.00939349 and γ1 = γ2 = 0.535714.

(a) Plot of the scaled SIR model(8) with
parameters tc = 30, Ic = Sc = Rc =
1000, The susceptible S(t) in blue
line, The population in red line, the
infected I(t) in orange and the recov-
ered in green line.

(b) Fit of the infected I(t) in orange to
the e�ective case data in black dot-
ted. And �t of the recovered R(t) in
green to the recovered case data in
blue dotted. The plotted data is for
Senegal. The data is padded 1.8 to
the right.

Figure 6: Plot of the scaled SIR model(8) compared with plot of Senegal's data in table 1. The date 2020

March 31 corresponds to the graduation 2.8.

iv. The �t by parametric resolution

Here we use a parametric solver in Wolfram Mathematica to solve the SIR model (2) with respect

to parameters β and γ. We start by using the values β = 5.0753 and γ = 1/45. Then after we get

the new values for the �t. The results are shown in �gures 7a, 7b and 7c for Senegal, in �gures 8a,

8b and 8c for China and in �gures 9a, 9b and 9c for France.
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(a) Plot of the SIR model(2) with the pa-
rameters β = 5.0753 and γ = 1/45
and the proportion of death µ =
0.01γ. The susceptible S(t) in red
line, The population in blue line, the
infected I(t) in green line, the re-
covered in orange line and the death
D(t) in purple.

(b) Plot of the SIR model(2) with the
parameters β = 5.0753, γ = 1/45,
the proportion of death µ = 0.01γ
and reduced population. And plot
without �t to the Infected data in
red dotted, the recovered data in blue
dotted, the death data in black dot-
ted.

(c) Plot of the SIR model(2) with the pa-
rameters β = 0.15, γ = 1/45 and the
proportion of death µ = 0.01γ. And
plot with �t to data.

(d) Plot of the SIR model(2) with the
parameters β = 0.15, γ = 1/45 and
the proportion of death µ = 0.01γ.
And plot of the �t without data.

Figure 7: Plot of the SIR model(2) compared with plot of Senegal's data in table 1. The total population of

Senegal we use is N=16743927. On the abscissa axis, the graduation 40 represents 2020, March

31.
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(a) Plot of the SIR model(2) with the pa-
rameters β = 5.0753 and γ = 1/45
and the proportion of death µ =
0.11γ. The susceptible S(t) in red
line, The population in blue line, the
infected I(t) in green line, the re-
covered in orange line and the death
D(t) in purple. The total population
is reduced.

(b) Plot of the SIR model(2) with the
parameters β = 5.0753, γ = 1/45,
the proportion of death µ = 0.01γ
and reduced population. The suscep-
tible S(t) in red line, The popula-
tion in blue line, the infected I(t)
in green line, the recovered in or-
ange line and the death D(t) in pur-
ple line. And plot without �t to the
Infected data in red dotted, the re-
covered data in blue dotted, the death
data in black dotted.

(c) Plot of the SIR model(2) with the pa-
rameters β = 0.35, γ = 1/40 and the
proportion of death µ = 0.11γ. And
plot with �t to the Infected data in
red dotted, the recovered data in blue
dotted, the death data in black dot-
ted.

Figure 8: Plot of the SIR model(2) compared with plot of China's data in table 2. The total population of

Hubei we use is N=59172000 (https://en.wikipedia.org/wiki/2020_Hubei_lockdowns). On the

abscissa axis, the graduation 63 represents 2020, March 08.
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(a) Plot of the SIR model(2) with the pa-
rameters β = 5.0753 and γ = 1/45
and the proportion of death µ =
0.01γ. The susceptible S(t) in red
line, The population in blue line, the
infected I(t) in green line, the re-
covered in orange line and the death
D(t) in purple.

(b) Plot of the SIR model(2) with the
parameters β = 5.0753, γ = 1/45,
the proportion of death µ = 0.01γ
and reduced population. And plot
without �t to the Infected data in
red dotted, the recovered data in blue
dotted, the death data in black dot-
ted.

(c) Plot of the SIR model(2) with the pa-
rameters β = 0.18, γ = 1/32 and the
proportion of death µ = 0.01γ. And
plot with �t to data.

(d) Plot of the SIR model(2) with the
parameters β = 0.18, γ = 1/32 and
the proportion of death µ = 0.01γ.
And plot of the �t without data.

Figure 9: Plot of the SIR model(2) compared with plot of France's data in table 3. The total population of

France we use is N=65241903. On the abscissa axis, the graduation 63 represents 2020, March

31.

v. Discussion

The SIR model is �tted to the data. This allows us to note that the maximum number of infected

can go up to 900000 (�gure 7d) in Senegal and 2700000 (�gure 9d) in France. While in the scaling

the �gures 6a shows that the maximum number of infected can go up to 320000. However, this

analysis does not take into account the nationwide anti-pandemic measures.

Using the results shown in the �gures 2c, 2e, 2d, 2f, 4a, 4b, 5a and 5b, we can see that the data

deviate from their �rst exponential evolution to follow a new, slower trajectory which can still be

exponential. To understand the nature of this new trajectory, the way to manage the contact rate

is decisive and can lead to di�erent analyzes. However, having considered a slow decrease over time

of the contact rate, we can see in the �gures 2e, 2f, 4b and 5b that the updated data pass under the

new trajectory for Senegal while in France the data follow the new trajectory. This could, therefore,

be due to the e�ects of the measures taken by these countries.
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V. Prediction

In this section, we plot some predictions for Senegal. The prediction does not concern the total

con�rmed cases, but only the e�ective cases obtained by reduced from the total con�rmed cases,

the recovered cases and the death cases.

We show the curve of e�ective infected cases given by TNI(t)−R(t)−D(t) with both β̃ (4) and (5),

the curve of the �tted infected I(t) in �gure 7c, and the curve obtained by using machine learning.

We plot these curves with additional dates until 2020, April 21.

We use machine learning, based only on data, to do forecasting.

�Predict� is a function of �Automated Machine Learning� in Wolfram Mathematica. It allows for

automatic training and data prediction. We can choose di�erent method of regression algorithm:

�RandomForest�, �LinearRegression�, �NeuralNetwork�, �GaussianProcess�, �NearestNeighbors�, etc.

We use the �NeuralNetwork� regression algorithm which predicts using an arti�cial neural network.

Let's recall that our forecasting use in a �rst part the results of the works in subsection i,ii and iii

where we use a SIR model to �t data. And in a second part, the forecasting using only data.

The forecasting show in �gures 10a, 10c an optimistic situation for Senegal. Also the machine

learning �gure 10e shows an optimistic forecasting. But in all cases, we see that the additional

data (March 31-06) goes down the predicting path. It may be caused by the nationwide anti-

pandemic measures in Senegal. In addition, we have considered in �gures 10a and 10b a contact

rate gradually reduced since the measures were taken and we see that the data come below the

path of the predicted curve.
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(a) Plot of the number of infected cases
using the scaling SIR model (6) with
β̃ given by (4). On the abscissa axis,
the graduation 30 represents 2020,
March 31. Then 2020, April 06 is
the graduation 36.

(b) Plot of the number of infected cases
using the scaling SIR model (6) with
β̃ given by (5). On the abscissa axis,
the graduation 30 represents 2020,
March 31. Then 2020, April 06 is
the graduation 36.

(c) Plot of the number of infected cases
using the scaling SIR model (8). On
the abscissa axis, the graduation 2.8
represents 2020, March 31. Then
2020, April 06 is the graduation 3.0.

(d) Plot of the number of infected cases
using SIR model (2) with paramet-
ric solve. On the abscissa axis,
the graduation 40 represents 2020,
March 31. Then 2020, April 06 is
the graduation 46.

(e) Plot of the number of infected cases by training a PredictorFunc-
tion to predict the average next values of infected. On the abscissa
axis, the graduation 30 represents 2020, March 31. Then 2020,
April 06 is the graduation 36.

Figure 10: Forecasting for Senegal, using the results of the works in subsection i,ii, iii and machine learn-

ing. The data plotted (red dotted, green dotted), is given in table 1, but completed until 2020,

April 06.
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(a) Plot of the number of infected cases using
the scaling SIR model (6) with β̃ given by
(4). On the abscissa axis, the graduation
70 represents 2020, March 31. Then 2020,
April 06 is the graduation 76.

(b) Plot of the number of infected cases using
the scaling SIR model (6) with β̃ given by
(5). On the abscissa axis, the graduation
70 represents 2020, March 31. Then 2020,
April 06 is the graduation 76.

(c) Plot of the number of infected cases using
SIR model (2) with parametric solve. On
the abscissa axis, the graduation 70 repre-
sents 2020, March 31. Then 2020, April
06 is the graduation 76.

(d) Plot of the number of infected cases by training a PredictorFunc-
tion to predict the average next values of infected. On the abscissa
axis, the graduation 70 represents 2020, March 31. Then 2020,
April 06 is the graduation 76.

Figure 11: Forecasting for France, using the results of the works in subsection i,ii and iii and machine

learning. The data plotted (red dotted, green dotted), is given in table 3, but completed until

2020, April 06.
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VI. Conclusion and Perspectives

In this paper, we have used the classical SIR model for �tting data and then we have done fore-

casting. We have also estimated the contact rate, and the average infectious period parameters of

the SIR model to obtain �t. Machine learning can help in epidemiology to understand the disease,

but also to study the impact or e�ectiveness of the anti-pandemic measures taken.

We can also study the ideal date for stopping the containment measures. Ideal in the sense that

even without the measures the disease can no longer spread. We can also study the possibility of

making periodic con�nements to reduce the economic impact of the measures. The economy may be

impacted by the evolution of the disease and measures. It would, therefore, be interesting to couple

economic models with epidemiological models. Since the impact can also be long-term, scaling can

be used to dimension the epidemiological-economic coupling. The impact of the environment is

also to be taken into account in the models. This means studying the contamination due to the

environment (air, objects, etc).

VII. Appendix

i. Using function �t in SIR model

From TNI(t) = b exp(ct)− a, we have TNI(t0) = b exp(ct0)− a and using (3), we obtain

b exp(ct0)− a = 0. (9)

We deduce a = b exp(ct0), then t0 =
ln(a)− ln(b)

c
.

Again from (3) we have

I(t) = ˙TNI(t) = bc exp(ct). (10)

Then I(t0) = bc exp(ct0) = ac = I0 and
I(t)

I(t0)
= exp(c(t− t0)). Hence, we obtain

I(t) = I(t0) exp(c(t− t0)), (11)

then İ(t0) = cI(t0).

From the second equation in the SIR model (1), we obtain at t0, İ(t0) =
βI0S0

N
− γI0 = cI(t0).

Hence, we get

c =
βS0

N
− γ. (12)

Using the third equation in the SIR model (1) yields

Ṙ(t) = γI(t0) exp(c(t− t0)), (13)

then integrating, we obtain

R(t) =
γ

c
(I(t)− I(t0)). (14)
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ii. Determination of the scaled SIR

S(t) = S(tct̄), I(t) = I(tct̄) and R(t) = R(tct̄), then replacing in left members of the SIR model

(1), we obtain:

Ṡ =
Sc
tc

˙̄S

İ =
Ic
tc

˙̄I

Ṙ =
Rc
tc

˙̄R

Replacing again in right members of the SIR model (1), we get:

Ṡ = −βScIc
N

ĪS̄

İ =
βScIc
N

ĪS̄ − γIcĪ

Ṙ = γIcĪ

Then we have:

Sc
tc

˙̄S = −βScIc
N

ĪS̄

Ic
tc

˙̄I =
βScIc
N

ĪS̄ − γIcĪ

Rc
tc

˙̄R = γIcĪ

Finally, we obtain: 

˙̄S = −βIctc
N

ĪS̄

˙̄I =
βSctc
N

ĪS̄ − γtcĪ

˙̄R = γ
Ictc
Rc

Ī

(15)
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