Por favor, use este identificador para citar o enlazar este ítem: http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/8455
More prevalent, less deadly? Bayesian inference of the COVID19 Infection Fatality Ratio from mortality data
Gustav Delius
Benedict Powell
Martin Bees
George Constable
Niall MacKay
Jonathan William Pitchford
Acceso Abierto
Atribución-NoComercial-SinDerivadas
https://doi.org/10.1101/2020.04.19.20071811
https://www.medrxiv.org/content/10.1101/2020.04.19.20071811v1
We use an established semi-mechanistic Bayesian hierarchical model of the COVID-19 pandemic [1], driven by European mortality data, to estimate the prevalence of immunity. We allow the infection-fatality ratio (IFR) to vary, adapt the model’s priors to better reflect emerging information, and re-evaluate the model fitting in the light of current mortality data. The results indicate that the IFR of COVID-19 may be an order of magnitude smaller than the current consensus, with the corollary that the virus is more prevalent than currently believed. These results emerge from a simple model and ought to be treated with caution. They emphasise the value of rapid community-scale antibody testing when this becomes available.
bioRxiv
22-04-2020
Preimpreso
Inglés
Público en general
VIRUS RESPIRATORIOS
Aparece en las colecciones: Materiales de Consulta y Comunicados Técnicos

Cargar archivos: