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Abstract

We use an established semi-mechanistic Bayesian hierarchical model of the COVID-19 pan-
demic [I], driven by European mortality data, to estimate the prevalence of immunity. We allow
the infection-fatality ratio (IFR) to vary, adapt the model’s priors to better reflect emerging in-
formation, and re-evaluate the model fitting in the light of current mortality data. The results
indicate that the IFR of COVID-19 may be an order of magnitude smaller than the current
consensus, with the corollary that the virus is more prevalent than currently believed. These
results emerge from a simple model and ought to be treated with caution. They emphasise the
value of rapid community-scale antibody testing when this becomes available.

1 Introduction

A central question of the COVID-19 pandemic is whether herd immunity has been or is being
developed to any useful extent. A reliable antibody test would rapidly elucidate the underlying
state of immunity across a community. For the present, we need to try to infer the level of immunity
from other available data.

Here our aim is to discover what the series of daily deaths (the most reliable of existing datasets for
the European epidemic) tells us about the infection-fatality-ratio (IFR), the proportion of infections
which results in death. Survival is assumed to result in immunity, which makes this ratio the crucial
parameter linking deaths to the dynamic development of herd immunity.

We seek to understand IFR rather than the perhaps more commonly used CFR (case-fatality-
ratio); the novelty of COVID-19 and the difficulties in its detection make the identification of ‘cases’
imprecise at the current time. In contrast, the definition of ‘infection’ is unambiguous — an infected
individual is someone who can infect other susceptible individuals.

2 The Model

There are multiple factors that influence the evolution of the epidemic and whose relative importance
are unknown. In [I] the COVID-19 Response Team at the MRC Centre for Global Infectious Disease
Analysis at Imperial College propose a semi-mechanistic Bayesian hierarchical model to attempt to
infer the impact of the various non-pharmaceutical interventions (self-isolation, social distancing,
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ban of public events, school closure and complete lockdown) from the time series of daily deaths
in 11 European countries, later extended to 14 countries [2]. The timing of these interventions
in the different countries is known, and this allows their impacts to be separated in the data.
The model is a stochastic implementation of the classic SIR (susceptible-infected-removed) model
structure in which individuals transition between these states over time. The results from the
model of [I] can be viewed online at https://mrc-ide.github.io/covidl9estimates/#/. We
are grateful to the Imperial College COVID-19 Response Team for the exemplary accessibility and
clarity of their work, including making their code available on GitHub at https://github.com/
ImperialCollegeLondon/covidl9model. The model assumes that each intervention reduces the
basic reproductive number R for the virus by a constant factor to Ry, starting on the day ¢ that
the intervention is imposed. This factor is assumed to be the same in all countries; only the date
of the intervention differs between countries. This assumption allows the pooling of the data from
all countries to extract the maximum amount of information. We will refer to this model as the
‘Flaxman model’ below.

The Flaxman model is used to provide a likelihood function for a Bayesian analysis of properties
of the population and the virus simultaneously. Informally, a Bayesian analysis involves using the
likelihood function to modify a set of current estimates for these properties encoded as a prior distri-
bution. The location, shape and structure of these distributions are chosen to represent uncertainty
in the current estimates. In accordance with Bayes’ rule for rational belief adjustment, the posterior
distribution derived from the prior and the likelihood function expresses updated beliefs about the
values of the model parameters given the data.

Direct, analytic calculation of the posterior distribution for the Flaxman model is intractable.
Instead its properties are approximated from samples from the posterior. These are computed using
Hamiltonian MCMC sampling as implemented by the statistical software Stan [3].

3 A reassessment of the Infection-Fatality Ratio for the Flax-
man model

3.1 Proposed modification to the prior

The Flaxman model, as described in [2], specifies country-specific IFR values in several steps. Pre-
vious work from the Imperial group, specifically [], is used to provide initial estimates that were
originally computed alongside homogeneity assumptions across age-groups. These are then adjusted
by factors understood to encode the effect of country-specific inter-generational mixing patterns.
The adjusted estimates, denoted IFR,,, with m indexing a country, are used to parameterize priors
for the true country-specific IFR values, denoted IFR; :

IFRY, = IFRu, X | Z| Zm ~ N(1,0.1), (1)

where the Z,, parameters allow for uncertainty around the IFR,, estimates and N(1,0.1) denotes
the normal distribution with mean one and standard deviation 0.1.

We argue that the available mortality data can and does constrain the true IFR; values away
from the regions of greatest prior probability mass as specified by . It is possible to assimilate
the extra information in the data by, for example, introducing an additional parameter p that scales
all of the country-specific IFR values. One convenient way to implement this is with the following
prior specification:

IFRY, = IFR,, x exp(p) X |Zpm, 1~ N(0,2), Zpm ~ N(1,0.1). (2)

The normal prior on i encodes a relaxation of the beliefs put forward in [2]. Specifically, it introduces
the idea that the true IFR values may be systematically misspecified, and that the appropriate correc-
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Figure 1: An approximate posterior (solid line) for the logged IFR adjustment parameter p, whose
role is defined in . The prior on p is also illustrated here (dashed line). The concentration
of posterior mass for p away from zero provides quantitative support for the hypothesis that it is
appropriate to revise the IFR values from [2], which used a prior that was tightly peaked around

n=0.

tion factor is a priori likely (with probability 0.95) to lie in the interval [exp(—1.96 x 2),exp(1.96 x 2)] =~
[1/50,50].

A concentration of posterior mass for p away from zero provides quantitative support for the
hypothesis that it is appropriate to revise the estimates arising from [2]. This is indeed the finding
of our recent numerical experiments. More precisely, we find that for a range of priors, which ac-
commodate a multiplicative adjustment to all countries simultaneously, posterior inferences strongly
suggest parameter values consistent with revising down the initial IFR values by a factor of about
ten.

The factor of e* applied to the IFR means that, in order to explain the same number of observed
deaths, the number of infections will be higher by a factor e ™. We therefore also scale the number
of initial infections used in the Flaxman model by this factor. Simulations in which these numbers
remained unscaled, although not presented here, lead us to near-identical posterior distributions.

3.2 Implications of the modified prior

The findings from our numerical experiments with the Flaxman model are usefully communicated
in Figures [T and 2]

In Figure [I] we plot an approximate posterior density function for the logged IFR parameter p.
We note in particular that 95% of its mass falls within the highest-posterior-density credible interval
[—3.07, —0.53], corresponding to a downwards revision of the original IFR; estimates by a factor
between 0.0475 and 0.590. Additional results, computed using uniform priors on the adjustment
parameter and which are not presented in the current document, lead to posteriors with very similar
accumulations of mass. In this sense the modified model, with IFR values informed by the European
death data, can be said to motivate significantly lower values than those inferred in [4].
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Figure 2: Daily infection, death and R; estimates for the UK as produced by the code provided
by [2]. Subfigures [2i| and show the inferences consistent with priors and , respectively.
The nested blue regions illustrate 50% and 95% credible regions for daily infection and death rates.
The heights of the vertical red bars correspond to observed deaths, which are the data that inform
parameter estimates. The R; estimates, whose likely values are also illustrated with 50% and 95%
credible regions, are inferred via the equations of the Flaxman model.
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Countries | Immunity with estimated IFR | Immunity with fixed IFR
Austria | 10.09%  [0.38% — 19.55%] 0.82% [0.58% — 1.17%)

Belgium | 70.29%  [6.54% — 91.51%) 12.90%  [8.28% — 19.40%]
Denmark | 11.62% [0.47% — 22.62%) 0.95% [0.67% — 1.33%)]
France | 43.44% [1.99% — 69.71%)] 4.35% [3.18% — 6.04%
Germany | 12.05% [0.43% — 24.72%) 0.89% [0.61% — 1.31%
Greece | 1.29%  [0.05% — 2.37%] 0.11% [0.08% — 0.15%
Italy | 43.98% [2.09% — 71.10% 4.03%

0.49% [0.34% — 0.72%
0.72% — 1.39%
4.57% — 7.99%]

Norway 6.12% 10.21% — 12.42%
Portugal | 12.22%
Spain | 59.33%

0.49% — 23.20% 1.00%

]
|
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] ]
| |
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Netherlands | 38.25% [1.71% — 66.12% 3.39% [2.51% — 4.55%

[ [
[ [
[ [
[ [
[ [
[ [

Sweden | 61.38%  [4.76% — 90.31% 9.88%  [4.74% — 18.55%)
Switzerland | 22.81%  [0.93% — 41.22% 1.93%  [1.43% — 2.62%]
United Kingdom | 44.09%  [2.33% — 71.23% 4.37% [3.22% — 5.90%]

Table 1: Model estimates of the mean and 95% credible interval for the percentage of the population
that is immune on 18 April 2020. Left column uses our posterior IFR; right column uses the fixed
IFR of [II.

In Subfigures 2] and Piil we compare the daily infection rate, daily death rate and daily repro-
ductive number (R;) estimates for the UK consistent with versions of the Flaxman model equipped
with priors and , respectively. The smaller IFR), values, made accessible by the relaxed prior
but informed by the European data via the model, lead to correspondingly larger estimates for
the number of daily infections over March and April. The death rates and the implied effects of
interventions on Ry to produce R;, however, are affected to a much smaller degree. We note that
the additional uncertainty introduced by prior also leads to considerable additional uncertainty
for these infection estimates.

Table 1 shows the (95%) credible intervals of possible fractions of the population in each country
that have been infected, for our estimated IFR and for the fixed IFR of [I]. Its most salient feature
is that, despite the apparently narrow posterior distribution of y in Figure 1, the range is large: in
the UK, anywhere between 2.3% and 71% may already have been infected — that is, between 1.6
million and 48 million people. The mean is around 30 million.

3.3 Modelling considerations

As explained above, the Flaxman model with a broader prior distribution for the IFR infers a
posterior distribution for the IFR that suggests values that are up to an order of magnitude smaller
than previously believed. We stress that this result relies on the assumption that the Flaxman model
captures the essence of the epidemic adequately. We will now discuss various possible modifications
of the model.

3.3.1 Incorporating an inert class

We considered the possibility that a fraction u of the population is unable to be infected and unable
to infect. (The mechanisms for such apparent ‘immunity’ are not considered here and may lie outside
traditional definitions; nevertheless such a sub-population naturally contributes to herd immunity.)
Simulations show that this has only a negligible effect on the IFR.
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3.3.2 Post-lockdown changes in contact structure

We are also concerned that the high apparent IFR may be at least in part an artefact of the very
different networks of social structure that apply after lockdown and that cannot be accommodated
by the Flaxman model, which assumes a continuous and well-mixed population. In reality, the post-
lockdown population contact network is likely to be highly modular, with the possibility of many
infection-free subpopulations [5] (e.g. rural communities or small self-isolating households) that are
effectively isolated from the main population over the timescale of available data.

The incorporation of an inert class, as in the previous subsection, could to some extent mimic
the existence of a proportion of post-lockdown isolated subpopulations within the model. However,
a crucial difference from the previous section is that the contribution to herd immunity provided by
this population structure is reversible and would be lost on the release of social distancing measures.

3.3.3 Implementation of lockdown

We considered the effect of introducing the impact of each intervention more gradually over one
infectious period, so that the reproductive number R; is no longer a step function. This removes
the abrupt jumps in the estimates of the daily number of infections visible in Figure Such a
gradual decrease in R; is more realistic, for example because after the lockdown individuals already
infected may continue to infect other members of their household. Our simulations show that while
this alters the relative effectiveness of the different interventions, it has only a negligible effect on
the IFR.

4 Discussion and Conclusions

These results come from a simple model, authored by a leading group, in which the complexities
of demography, and the diversities of an individual’s chance of, and response to, infection, are
compressed into independent random variables which describe and link simple categories. This allows
transparency, and clarity of interpretation, but sacrifices the detail offered by models with more
complex transmission possibilities (e.g. [6]) and by data-intensive approaches (e.g. [7]). Naturally,
such disparate approaches ought to be regarded as complementary and any conclusions treated with
appropriate caution.

One very powerful aspect of this simple approach is that it considers only mortality. While it is
true that there remain biases and imprecisions (figures may be under-reported; death from COVID-
19 is not death with COVID-19), such inaccuracies are unlikely to explain the observed order-of-
magnitude changes in IFR. We note that under-reporting by a constant ratio simply translates into
the same ratio applied to the IFR, but does not affect the levels of herd immunity implied by Table
1. Current European data may also confer an advantage over previous work based on data solely
from China [4].

Our results suggest that, for European data at national scales, IFR estimates may be reduced by
a large factor. A preliminary study [§] in Santa Clara County, California, estimates that COVID-
19 seroprevalence exceeds the reported confirmed cases by a factor compatible with our analysis.
Qualitatively similar results suggesting increased prevalence emerge also from Gangelt (Germany)
[9). In confined environments such as the Diamond Princess cruise ship [10] it is also possible that
infection was more widespread than reported cases (but the unusual age distribution plays a crucial
role in this case). This issue needs closer scrutiny as testing improves.

Our simple model suggests that the proportion of the population who cannot, or can no longer,
be infected or infectious is larger than currently-accepted opinion. As we see from Table[I] the range
of possibilities supported by the data is large, but the immunity level in the UK, for example, is
probably much greater than current estimates, and a significant fraction of the population. Notice
that this is not quite the same as saying that the prevalence of COVID-19 in the population is
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much higher than currently believed: recall that the model cannot discriminate well between the
effects of IFR and of an inert class. The former will be directly tested with the advent of practicable
community-scale antibody testing, while the latter, if it exists at all, is likely only to become clear
gradually with a wide range of work. However, it is the sum of effects leading to herd immunity —
whether initial, dynamically developing, or some combination of these — which is crucial.

We do not consider that our results have any immediate implications for policy in releasing
lockdown or relaxing social distancing. Our short-term forecasts do not differ greatly from those
of the Flaxman model — rather we emphasize that present data and near-future forecasts can be
consistent with very different underlying IFR. Future policy decisions must necessarily embody a
precautionary principle, carefully engineering an effective reproductive number which appropriately
balances social and economic needs — a political decision. For example, to mitigate the reversal of
effective herd immunity gains we might adopt a strategy of alternating relaxation of lockdown [T1].

Our results suggest three possibilities. Either 1) the higher IFR estimated on the basis of early
data and used in [I], while unlikely in the context of more recent fatality data, is correct, 2) the
model requires further refinement, such as including age or network structure, or 3) the Flaxman
model is sufficient, the data are reliable, and with high probability the IFR is much lower than has
been the prevailing view, with herd immunity developing over a period of months.

Code for reproducing the results of this report and plots of the results for other European
countries can be found at https://github.com/gustavdelius/covid19model/, where also further
development is taking place.
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