Por favor, use este identificador para citar o enlazar este ítem:
http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/8685
A phenomenological algorithm for short-range predictions of the Covid-19 pandemic 2020 | |
Piotr Tadeusz Chru?ciel Sebastian Szybka | |
Acceso Abierto | |
Atribución-NoComercial-SinDerivadas | |
https://doi.org/10.1101/2020.05.22.20098350 | |
https://www.medrxiv.org/content/10.1101/2020.05.22.20098350v1 | |
We present an algorithm for dynamical fitting of a logistic curve to the Covid-19 epidemics data, with fit-parameters linearly evolving to the future. We show that the algorithm would have given reasonable short- and medium-range predictions for the mid-range evolution of the epidemics for several countries. We introduce the double-logistic curve, which provides a very good description of the epidemics data at any given time of the epidemics. We analyse the predictability properties of some naive models. | |
bioRxiv | |
26-05-2020 | |
Preimpreso | |
Inglés | |
Público en general | |
VIRUS RESPIRATORIOS | |
Versión publicada | |
publishedVersion - Versión publicada | |
Aparece en las colecciones: | Materiales de Consulta y Comunicados Técnicos |
Cargar archivos:
Fichero | Tamaño | Formato | |
---|---|---|---|
A phenomenological algorithm for short-range predictions of the Covid-19 pandemic 2020.pdf | 9.96 MB | Adobe PDF | Visualizar/Abrir |