Por favor, use este identificador para citar o enlazar este ítem: http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/8685
A phenomenological algorithm for short-range predictions of the Covid-19 pandemic 2020
Piotr Tadeusz Chru?ciel
Sebastian Szybka
Acceso Abierto
Atribución-NoComercial-SinDerivadas
https://doi.org/10.1101/2020.05.22.20098350
https://www.medrxiv.org/content/10.1101/2020.05.22.20098350v1
We present an algorithm for dynamical fitting of a logistic curve to the Covid-19 epidemics data, with fit-parameters linearly evolving to the future. We show that the algorithm would have given reasonable short- and medium-range predictions for the mid-range evolution of the epidemics for several countries. We introduce the double-logistic curve, which provides a very good description of the epidemics data at any given time of the epidemics. We analyse the predictability properties of some naive models.
bioRxiv
26-05-2020
Preimpreso
Inglés
Público en general
VIRUS RESPIRATORIOS
Versión publicada
publishedVersion - Versión publicada
Aparece en las colecciones: Materiales de Consulta y Comunicados Técnicos

Cargar archivos: