Por favor, use este identificador para citar o enlazar este ítem: http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/8658
Low-coverage whole genome sequencing for a highly selective cohort of severe COVID-19 patients
Renato Santos
Victor Moreno-Torres
Ilduara Pintos Pascual
OCTAVIO CORRAL PAZOS DE PROVENS
Carmen de Mendoza
Vicente Soriano
Manuel Corpas
Acceso Abierto
Atribución-NoComercial-SinDerivadas
https://doi.org/10.1101/2024.01.28.577610
https://www.biorxiv.org/content/10.1101/2024.01.28.577610v1
Despite advances in identifying genetic markers associated to severe COVID-19, the full genetic characterisation of the disease remains elusive. This study explores the use of imputation in low-coverage whole genome sequencing for a severe COVID-19 patient cohort. We generated a dataset of 79 imputed variant call format files using the GLIMPSE1 tool, each containing an average of 9.5 million single nucleotide variants. Validation revealed a high imputation accuracy (squared Pearson correlation ≈0.97) across sequencing platforms, showing GLIMPSE1’s ability to confidently impute variants with minor allele frequencies as low as 2% in Spanish ancestry individuals. We conducted a comprehensive analysis of the patient cohort, examining hospitalisation and intensive care utilisation, sex and age-based differences, and clinical phenotypes using a standardised set of medical terms developed to characterise severe COVID-19 symptoms. The methods and findings presented here may be leveraged in future genomic projects, providing vital insights for health challenges like COVID-19.
bioRxiv
29-01-2024
Preimpreso
Inglés
Público en general
VIRUS RESPIRATORIOS
Versión publicada
publishedVersion - Versión publicada
Aparece en las colecciones: Materiales de Consulta y Comunicados Técnicos

Cargar archivos: