Por favor, use este identificador para citar o enlazar este ítem:
http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/8454
COVID-19 outbreak in Wuhan demonstrates the limitations of publicly available case numbers for epidemiological modelling | |
Elba Raimundez Erika Dudkin Jakob Vanhoefer Emad Alamoudi Simon Merkt Lara Fuhrmann Fan Bai Jan Hasenauer | |
Acceso Abierto | |
Atribución-NoComercial-SinDerivadas | |
https://doi.org/10.1101/2020.04.19.20071597 | |
https://www.medrxiv.org/content/10.1101/2020.04.19.20071597v1 | |
Epidemiological models are widely used to analyse the spread of diseases such as the global COVID-19 pandemic caused by SARS-CoV-2. However, all models are based on simplifying assumptions and on sparse data. This limits the reliability of parameter estimates and predictions. In this manuscript, we demonstrate the relevance of these limitations by performing a study of the COVID-19 outbreak in Wuhan, China. We perform parameter estimation, uncertainty analysis and model selection for a range of established epidemiological models. Amongst others, we employ Markov chain Monte Carlo sampling, parameter and prediction profile calculation algorithms. Our results show that parameter estimates and predictions obtained for several established models on the basis of reported case numbers can be subject to substantial uncertainty. More importantly, estimates were often unrealistic and the confidence / credibility intervals did not cover plausible values of critical parameters obtained using different approaches. These findings suggest, amongst others, that several models are oversimplistic and that the reported case numbers provide often insufficient information. | |
bioRxiv | |
22-04-2020 | |
Preimpreso | |
Inglés | |
Público en general | |
VIRUS RESPIRATORIOS | |
Aparece en las colecciones: | Materiales de Consulta y Comunicados Técnicos |
Cargar archivos:
Fichero | Tamaño | Formato | |
---|---|---|---|
COVID-19 outbreak in Wuhan demonstrates the limitations of publicly available case numbers for epidemiological modelling.pdf | 5.3 MB | Adobe PDF | Visualizar/Abrir |