Por favor, use este identificador para citar o enlazar este ítem: http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/8369
KUL@SMM4H’23: Text Augmentations with R-drop for Classification of Tweets Self Reporting Covid-19
sumam francis
Marie-Francine Moens
Acceso Abierto
Atribución-NoComercial-SinDerivadas
https://doi.org/10.1101/2023.11.06.23298151
https://www.medrxiv.org/content/10.1101/2023.11.06.23298151v1
This paper presents models created for the Social Media Mining for Health 2023 shared task. Our team addressed the first task, classifying tweets that self-report Covid-19 diagnosis. Our approach involves a classification model that incorporates diverse textual augmentations and utilizes R-drop to augment data and mitigate overfitting, boosting model efficacy. Our leading model, enhanced with R-drop and augmentations like synonym substitution, reserved words, and back translations, outperforms the task mean and median scores. Our system achieves an impressive F1 score of 0.877 on the test set.
bioRxiv
07-11-2023
Preimpreso
Inglés
Público en general
VIRUS RESPIRATORIOS
Aparece en las colecciones: Materiales de Consulta y Comunicados Técnicos

Cargar archivos:


Fichero Tamaño Formato  
KUL@SMM4H’23.pdf101.35 kBAdobe PDFVisualizar/Abrir