Por favor, use este identificador para citar o enlazar este ítem:
http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/8369
KUL@SMM4H’23: Text Augmentations with R-drop for Classification of Tweets Self Reporting Covid-19 | |
sumam francis Marie-Francine Moens | |
Acceso Abierto | |
Atribución-NoComercial-SinDerivadas | |
https://doi.org/10.1101/2023.11.06.23298151 | |
https://www.medrxiv.org/content/10.1101/2023.11.06.23298151v1 | |
This paper presents models created for the Social Media Mining for Health 2023 shared task. Our team addressed the first task, classifying tweets that self-report Covid-19 diagnosis. Our approach involves a classification model that incorporates diverse textual augmentations and utilizes R-drop to augment data and mitigate overfitting, boosting model efficacy. Our leading model, enhanced with R-drop and augmentations like synonym substitution, reserved words, and back translations, outperforms the task mean and median scores. Our system achieves an impressive F1 score of 0.877 on the test set. | |
bioRxiv | |
07-11-2023 | |
Preimpreso | |
Inglés | |
Público en general | |
VIRUS RESPIRATORIOS | |
Aparece en las colecciones: | Materiales de Consulta y Comunicados Técnicos |
Cargar archivos:
Fichero | Tamaño | Formato | |
---|---|---|---|
KUL@SMM4H’23.pdf | 101.35 kB | Adobe PDF | Visualizar/Abrir |