Por favor, use este identificador para citar o enlazar este ítem: http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/8363
Monitoring Italian COVID-19 spread by an adaptive SEIRD model
elena loli piccolomini
FABIANA ZAMA
Acceso Abierto
Atribución-NoComercial-SinDerivadas
https://doi.org/10.1101/2020.04.03.20049734
https://www.medrxiv.org/content/10.1101/2020.04.03.20049734v1
Due to the recent diffusion of COVID-19 outbreak, the scientific community is making efforts in analysing models for understanding the present situation and predicting future scenarios. In this paper, we propose a Susceptible-Infected-Exposed-Recovered-Dead (SEIRD) differential model [Weitz J. S. and Dushoff J., Scientific reports, 2015] for the analysis and forecast of the COVID-19 spread in Italian regions, using the data from the Italian Protezione Civile from February 24th 2020. In this study, we investigate an adaptation of SEIRD that takes into account the actual policies of the Italian government, consisting of modelling the infection rate as a time-dependent function (SEIRD(rm)). Preliminary results on Lombardia and Emilia-Romagna regions confirm that SEIRD(rm) fits the data more accurately than the original SEIRD model with constant rate infection parameter. Moreover, the increased flexibility in the choice of the infection rate function makes it possible to better control the predictions due to the lockdown policy.
bioRxiv
06-04-2020
Preimpreso
Inglés
Público en general
VIRUS RESPIRATORIOS
Aparece en las colecciones: Materiales de Consulta y Comunicados Técnicos

Cargar archivos: