Por favor, use este identificador para citar o enlazar este ítem:
http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/8363
Monitoring Italian COVID-19 spread by an adaptive SEIRD model | |
elena loli piccolomini FABIANA ZAMA | |
Acceso Abierto | |
Atribución-NoComercial-SinDerivadas | |
https://doi.org/10.1101/2020.04.03.20049734 | |
https://www.medrxiv.org/content/10.1101/2020.04.03.20049734v1 | |
Due to the recent diffusion of COVID-19 outbreak, the scientific community is making efforts in analysing models for understanding the present situation and predicting future scenarios. In this paper, we propose a Susceptible-Infected-Exposed-Recovered-Dead (SEIRD) differential model [Weitz J. S. and Dushoff J., Scientific reports, 2015] for the analysis and forecast of the COVID-19 spread in Italian regions, using the data from the Italian Protezione Civile from February 24th 2020. In this study, we investigate an adaptation of SEIRD that takes into account the actual policies of the Italian government, consisting of modelling the infection rate as a time-dependent function (SEIRD(rm)). Preliminary results on Lombardia and Emilia-Romagna regions confirm that SEIRD(rm) fits the data more accurately than the original SEIRD model with constant rate infection parameter. Moreover, the increased flexibility in the choice of the infection rate function makes it possible to better control the predictions due to the lockdown policy. | |
bioRxiv | |
06-04-2020 | |
Preimpreso | |
Inglés | |
Público en general | |
VIRUS RESPIRATORIOS | |
Aparece en las colecciones: | Materiales de Consulta y Comunicados Técnicos |
Cargar archivos:
Fichero | Tamaño | Formato | |
---|---|---|---|
Monitoring Italian COVID-19 spread by an adaptive SEIRD model.pdf | 1.14 MB | Adobe PDF | Visualizar/Abrir |