Por favor, use este identificador para citar o enlazar este ítem:
http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/8050
Evaluating the use of social contact data to produce age-specific forecasts of SARS-CoV-2 incidence | |
James Munday Sam Abbott Sophie Meakin Sebastian Funk | |
Acceso Abierto | |
Atribución-NoComercial-SinDerivadas | |
https://doi.org/10.1101/2022.12.02.22282935 | |
https://www.medrxiv.org/content/10.1101/2022.12.02.22282935v1 | |
Abstract Short-term forecasts can provide predictions of how an epidemic will change in the near future and form a central part of outbreak mitigation and control. Renewal-equation based models are increasingly popular. They infer key epidemiological parameters from historical epidemiological data and forecast future epidemic dynamics without requiring complex mechanistic assumptions. However, these models typically ignore interaction between age-groups, partly due to challenges in parameterising a time varying interaction matrix. Social contact data collected regularly by the CoMix survey during the COVID-19 epidemic in England, provide a means to inform interaction between age-groups in real-time. We developed an age-specific forecasting framework and applied it to two age-stratified time-series: incidence of SARS-CoV-2 infection, estimated from a national infection and antibody prevalence survey; and, reported cases according to the UK national COVID-19 dashboard. Jointly fitting our model to social contact data from the CoMix study, we inferred a time-varying next generation matrix which we used to project infections and cases in the four weeks following each of 29 forecast dates between October 2021 and November 2022. We evaluated the forecasts using proper scoring rules and compared performance with three other models with alternative data and specifications alongside two naive baseline models. Overall, incorporating age-interaction improved forecasts of infections and the CoMix-data-informed model was the best performing model at time horizons between two and four weeks. However, this was not true when forecasting cases. We found that age-group-interaction was most important for predicting cases in children and older adults. The contact-data-informed models performed best during the winter months of 2020 - 2021, but performed comparatively poorly in other periods. We highlight challenges regarding the incorporation of contact data in forecasting and offer proposals as to how to extend and adapt our approach, which may lead to more successful forecasts in future. | |
bioRxiv | |
03-12-2022 | |
Preimpreso | |
Inglés | |
Público en general | |
VIRUS RESPIRATORIOS | |
Aparece en las colecciones: | Materiales de Consulta y Comunicados Técnicos |
Cargar archivos:
Fichero | Tamaño | Formato | |
---|---|---|---|
Evaluating the use of social contact data to produce age-specific forecasts of SARS-CoV-2 incidence.pdf | 4.01 MB | Adobe PDF | Visualizar/Abrir |