Por favor, use este identificador para citar o enlazar este ítem: http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/7659
An ML prediction model based on clinical parameters and automated CT scan features for COVID-19 patients
Abhishar Sinha
Swati Joshi
Purnendu Sekhar, Das
Soumya Jana
Rahuldeb Sarkar
Acceso Abierto
Atribución-NoComercial-SinDerivadas
https://doi.org/10.1101/2022.01.30.22269998
https://www.medrxiv.org/content/10.1101/2022.01.30.22269998v1
Outcome prediction for individual patient groups is of paramount importance in terms of selection of appropriate therapeutic options, risk communication to patients and families, and allocating resource through optimum triage. This has become even more necessary in the context of the current COVID-19 pandemic. Widening the spectrum of predictor variables by including radiological parameters alongside the usually utilized demographic, clinical and biochemical ones can facilitate building a comprehensive prediction model. Automation has the potential to build such models with applications to time-critical environments so that a clinician will be able to utilize the model outcomes in real-time decision making at bedside. We show that amalgamation of computed tomogram (CT) data with clinical parameters (CP) in generating a Machine Learning model from 302 COVID-19 patients presenting to an acute care hospital in India could prognosticate the need for invasive mechanical ventilation. Models developed from CP alone, CP and radiologist derived CT severity score and CP with automated lesion-to-lung ratio had AUC of 0.87 (95% CI: 0.85-0.88), 0.89 (95% CI: 0.87-0.91), and 0.91 (95% CI: 0.89-0.93), respectively. We show that an operating point on the ROC can be chosen to aid clinicians in risk characterization according to the resource availability and ethical considerations. This approach can be deployed in more general settings, with appropriate calibrations, to predict outcomes of severe COVID-19 patients effectively.
medRxiv and bioRxiv
01-02-2022
Preimpreso
https://www.medrxiv.org
Inglés
Epidemia COVID-19
Público en general
VIRUS RESPIRATORIOS
Versión publicada
publishedVersion - Versión publicada
Aparece en las colecciones: Artículos científicos

Cargar archivos: