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ABSTRACT

Outcome prediction for individual patient groups is of paramount importance in terms of selection of appropriate therapeutic
options, risk communication to patients and families, and allocating resource through optimum triage. This has become
even more necessary in the context of the current COVID-19 pandemic. Widening the spectrum of predictor variables by
including radiological parameters alongside the usually utilized demographic, clinical and biochemical ones can facilitate
building a comprehensive prediction model. Automation has the potential to build such models with applications to time-critical
environments so that a clinician will be able to utilize the model outcomes in real-time decision making at bedside. We
show that amalgamation of computed tomogram (CT) data with clinical parameters (CP) in generating a Machine Learning
model from 302 COVID-19 patients presenting to an acute care hospital in India could prognosticate the need for invasive
mechanical ventilation. Models developed from CP alone, CP and radiologist derived CT severity score and CP with automated
lesion-to-lung ratio had AUC of 0.87 (95% CI: 0.85-0.88), 0.89 (95% CI: 0.87-0.91), and 0.91 (95% CI: 0.89-0.93), respectively.
We show that an operating point on the ROC can be chosen to aid clinicians in risk characterization according to the resource
availability and ethical considerations. This approach can be deployed in more general settings, with appropriate calibrations,
to predict outcomes of severe COVID-19 patients effectively.

Introduction
The COVID-19 pandemic, caused by the coronavirus Sars-Cov-2, has been ravaging countries around the world since early
2020 in waves dominated by different variants. As recently as on 26th of November 2021, another newly declared variant of
concern (VOC) called Omicron1 has caused significant alarm across the globe with multiple significant mutations, reminding
us that the pandemic and its associated concerns are far from over. Around the peaks of each wave, healthcare systems were
stretched, as large number of people simultaneously required urgent medical attention in the form hospitalization, and some of
them required admission to the intensive care units for mechanical ventilation, which is extremely scarce resource2, 3. In this
backdrop, prioritization and triaging became a key area for discussion in order to ensure that the care is directed to patients
who require it most and benefit the most from it. Multiple ethical guidelines have been published based on clinical parameters,
including guidance for optimizing allocation of mechanical ventilators, even in developed economies4, 5. However, in a high
volume patient admission scenario, risk stratification for clinically meaningful outcomes of admission to hospital, intensive
care units and/or mechanical ventilation may be challenging and potentially suboptimal, when the model is based on clinical
parameters alone, as it misses out on vital data derived from radiological examination.

Machine learning (ML) models have been used in the development of prognostic models already in the current pandemic6, 7.
CT imaging, that can provide us with detailed involvement of lung tissue and the contiguous structures in the disease process
with reasonable detail, can be added to the clinical parameter based models to make the prognostication more comprehensive.
It may be noted that severity of lung infection has already been measured using the CT severity score based on chest CT
scans, and this requires manual assessments by a radiologist8. This is vulnerable to intra- and inter-observer variability9, 10,
especially at a time of high volume reporting. In fact, a prediction model has been developed with amalgamation of clinical and
radiological features11. However, the radiological quantification of disease was done manually in that model, which can be
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labor intensive and subject to the variabilities mentioned above. Additionally, in low and middle income countries (LMIC)
such as India, qualified radiologists are scarce relative to the population. For example, India has a meagre 0.9 physicians
per 1000 population12, of whom only a small proportion are radiologists, making consistently high quality assessment of
radiological images a challenge. In such situations, an automated method to quantify the inflammation in the lungs can be
useful to reduce the workload on the radiologists with potentially improved consistency in reporting. We hypothesize that first,
algorithmic scoring of CT scans could be almost as effective as manually generated CT severity scores in delineating pulmonary
disease activity, and second, this can in turn contribute towards a prognostication model in conjunction with clinical parameters.
Therefore, demographic and clinical data such as age and sex, blood-based biomarkers such as C reactive protein (CRP) and D
dimer, and pre-existing conditions such as diabetes and hypertension, which have all been shown to prognosticate COVID-19,
can be combined with an algorithmically generated lung inflammation index, in order to make a clinically robust prognostic
model in predicting clinically meaningful outcomes, of which we considered the need for invasive mechanical ventilation as the
outcome of our choice in view of it’s importance for the severely affected patients in the background of resource scarcity. An
important point to consider would be the need for re-calibration of the model in different scenarios in order to avoid bias that
may arise from differences in patient demographics and unique healthcare delivery in each setting. Currently, there is a lack of
model development in LMICs, an issue which the current study can potentially address.

In the current study, we have addressed the two aforementioned important issues by developing a ML-based clinico-
radiological outcome prediction model on patients based in a university hospital in western India. The measurement of the
disease burden in the CT scan has been automated, which reduces the workload of reporting radiologists.

Methods
The study was approved by the Institute Review Board of Mahatma Gandhi Medical College and Hospital (MGMCH), Jaipur,
India (Contact Institutional Ethics Committee MGMCH, mgumst.ethics.committee@gmail.com). The informed consent was
waived due to the retrospective observational characteristic of the study by the Review Board. All methods were performed in
accordance with the relevant guidelines and regulations of the Review Board of MGMCH.

We developed an automated system to predict if a patient with COVID-19 is going to need mechanical ventilation, combining
data from chest CT scan and clinical parameters. We algorithmically computed Automated Lesion Lung Ratio (ALLR) from
the CT scan of each subject, and trained an ML prediction model using clinical features and ALLR. We also trained two other
models using only clinical features and clinical features along with CT severity score, to compare the performance with the
fully automated system, and verify that we are not losing accuracy while reducing the involvement of radiologists. A flow
diagram to show the method is shown in Figure 1.

Here, to compute ALLR, we needed to segment the lungs and their inflamed regions. For such segmentation tasks, we
needed to train two different ML models based on separate annotated datasets.

Dataset Description
To train the segmentation models, we relied on publicly available datasets. For the lung segmentation task, we made use of
a subset13 of the COVID-19 CT Lung and Infection Segmentation Dataset14. This dataset, henceforth called dataset-1, has
2581 axial slices of CT scans from 10 subjects, each consisting of non-contrast CT scans with a slice thickness of 1-1.2mm
and slice distance of 1-1.2mm, as well as the corresponding lung masks. For the inflammation segmentation task, we used the
dataset (henceforth referred as dataset-2) from COVID-19 Lung CT Lesion Segmentation Challenge15–17, consisting of 13705
axial slices of chest CT scans from 199 patients taken at slice thickness 5mm and slice distance 5mm, and the corresponding
inflammation masks. The data preparation details are given in Supplementary section 1.

Further, clinical and radiological data of COVID-19 patients were collected at MGMCH between October to December
2020 for the purpose of developing and validating the prognosis model. The data included anonymized CT scans as well as
clinical, demographic, biochemical, and radiological parameters of 302 COVID-19 patients. Volumetric thin section CT scans
were obtained with slices of 0.625mm each with high spatial frequency. The clinical parameters in the dataset and other details
are furnished in Table 1. This dataset also had missing values, these were replenished via data imputation. Specifically, the
missing day of presentation was imputed with the median value. Missing values for the rest of the features were imputed using
the nearest neighbors method with the assumption that similar known parameters indicate similarity in unknown parameters as
well18.

Model Development
We developed ML models to tackle two major tasks, namely, (i) lung and inflammation segmentation in CT images, and (ii)
multiparameter prediction of the outcome.
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Figure 1. Flowchart Top panel shows the flow chart of the project. This shows the experiment of training 3 models on
different feature sets. Model-CP was trained only on clinical parameters. Model-CTSS was trained on clinical features
appended with CT severity score. Model-ALLR was trained on clinical features appended with ALLR. The bottom panel is the
expanded view of lung and inflammation segmentation. The lungs mask are produced by a segmentation model from CT scan.
This mask is used to get the region of interest (ROI). The ROI is given as input to another segmentation model that produces the
inflammation masks.

CT Image Segmentation
In CT images, we first delineated the lungs, and subsequently marked the inflamed regions within the lungs. For each subtask,
we make use of a suitable deep network.

Lung segmentation: For lung segmentation, we used Bi-directional Conv-LSTM U-Net with Densely Connected Convolu-
tions (BCDU-Net), which had reported high performance in an analogous task in a lung cancer study19. Inspired by that work,
we adopted a complementary approach, where, instead of a mask for the lungs, one uses that for the chest region excluding
lungs. Further, we made certain improvements in the preprocessing step for generating such masks, by identifying areas for
improvements by manual assessment. Specifically, trachea had wrongly been segmented as part of the lung. To prevent this
without compromising the segmentation accuracy, we performed a convex hull operation that caused the trachea to now be
correctly identified. Training and test subsets were generated by randomly splitting dataset-1 (10 CT scans) in a 4:1 ratio. We
made use of the intersection over union (IoU) loss criterion (i.e., 1 - IoU), and the Adam optimizer with an initial learning rate
of 10−4. The model was trained for 100 epochs. In view of the small size of the dataset, image augmentation was used while
training as an aid to the generalizability of the model. Data augmentation details are presented in Supplementary section 2.1.

To improve the quality of lung masks generated by model, the following post processing steps were included in the lung
segmentation algorithm. Morphological opening operation with a disk of size 3 pixels as structuring element was used to
disconnect trachea from lung, and then connected components were labeled in the mask and the components with size less
than a third of total volume were removed, so that only the lungs were present in the mask. We identified another qualitative
issue with the model’s prediction, which was not evident from the dice score. The boundaries of the lungs were jagged
because of misclassifications, in some cases where there was a thickening of the pleura or presence of peripheral ground
glass. Morphological geodesic active contour20, 21 was used to smooth the boundaries. The mask was given as an initial level
set to the algorithm to minimize the internal energy function, which smoothens the boundaries of mask. The multipliers for
balloon/pressure force and the internal energy terms were 1. The number of iterations was set to 10

Lung inflammation segmentation: For lung inflammation segmentation, we employed UNet++, which extends UNet by
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introducing a denser network of skip connections with convolution blocks bridging the semantic gap between the encoder and
decoder feature maps22, and whose performance we compared with that of BCDU-Net. Training and test subsets were created
by splitting dataset-2 in the ratio of 4:1. Noting that the gray-scale values vary widely within the manually annotated lesions
(lighter shade indicating higher severity, while low-severity areas being close to uninfected tissues in shade), we sought to focus
on subregions with severe infections in order to facilitate its automated distinction from healthy lung tissues. For this purpose,
we initialized with the contour of original annotations, and shrank those by the morphological geodesic active contour method
to high-severity subregions. The multipliers for the internal energy and pressure terms were 0 and -1.25, respectively. The
number of iterations were set to 50.

We trained the inflammation segmentation model using such subregions as reference. As earlier, we minimized IoU loss
using Adam optimizer with an initial learning rate of 10−4. The model was trained for 30 epochs, with data augmentation. The
developed model was used to segment inflamed regions in each 2D axial slice of a CT scan. The data augmentation details are
given in Supplementary section 2.2.

Performance index: We measured the segmentation fidelity in terms of Dice coefficient (DC) between the estimated and
the reference regions, defined as twice the area of the intersection of the said regions divided by the sum of the areas of those
regions. Stacking the aforementioned axial slices, we obtained the CT volume, in which the segmented lungs assembled into
the lung volume, and the inflamed subregions into the lesion volume. The ALLR was subsequently computed as the volumetric
ratio of lesion to lung. To each MGMCH data record, we appended the ALLR for subsequent analysis.

Outcome Prediction
While admitting each COVID-19 patient, the hospital records the demographic, the biochemical as well as the radiological
parameters based on the chest CT scan (if performed) along with pre-existing conditions. In this study, we used the patient
records to develop an ML model to predict the need for mechanical ventilation (MV), an acutely scarce resource, based on
the MGMCH dataset. Prediction of such need is a clinically meaningful and significant outcome, which may guide efficient
triaging (e.g., patients in need of MV should be admitted to a hospital in a unit where they can be monitored effectively).

ML model: Predicting the need for MV was posed as a classification task, and we assessed the efficacy of competing ML
models for this task. Specifically, we compared the performance of random forest23 and XGBoost24 (extreme gradient boost),
two well-known ensemble models, usually superior to single models in terms of generalizability and robustness25, 26. The
random forest, a bagging type of ensemble, consists of multiple independent decision trees, each of which is trained using a
random subset of features and a random subset of samples drawn with replacement, and hence enjoys reduced variance of the
ensemble, avoiding overfitting. In contrast, XGBoost makes use of a type of gradient boosting, where multiple decision tree
models are trained in succession, each tending to improve performance. As a result, the ensemble, a weighted combination of
component models, enjoys both reduced bias and reduced variance. We tuned the hyperparameters via grid search in case of
both random forest and XGBoost.

In order to test if algorithmically generated ALLRs are as effective as the manually generated CT severity scores in
predicting the need for ventilation, we performed the following experiment. We established as a baseline the performance of
a reference ML model (via suitable training) based only on clinical parameters. Subsequently, two additional models were
developed, where clinical parameters were appended with the CT severity score in case of one, and the ALLR in case of the
other. Performance of those two models were compared under various criteria with the performance of the reference model as a
baseline. Here, we considered two versions of each of the models, one based on random forest and the other based on XGBoost.
For all models the categorical features were encoded using label encoding and the numeric features were treated as continuous
variables.

In case of each model, we performed Monte-Carlo cross validation27.The dataset was randomly split into training and test
subsets in a 4:1 ratio in a stratified manner. The model was trained on the former subset, and the outcome was predicted for
each case in the unseen test subset. In particular, the probability of the outcome was recorded for each test case, which led to a
binary decision based on a suitable threshold. To report various statistics involving test performance, this above process was
repeated for 50 independently generated training-test partitions. Specifically, the model with the median performance may be
taken as a representative.

Performance indices: The receiver operating characteristic (ROC) curve is plotted by calculating true positive rate (TPR)
and false positive rate (FPR) for various threshold points of the probability generated by a model. ROC curve is convex by
definition, so we took the convex hull of the curve, where the operating points between the optimal points are obtained by time
sharing. We also calculate the area under the curve (AUC) to compare different models. It is a more useful performance metric
than accuracy in cases of class imbalance, which is present in the MGMCH dataset.

Further, we computed the confusion matrix to compare different models. A confusion matrix includes TPR, FPR, true
negative rate (TNR) and false negative rate (FNR) which are calculated after thresholding. Generally, the threshold probability
is selected to maximize the accuracy. In different settings, TPR and TNR may not always have equal importance but accuracy
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weighs them equally. Hence, we also calculate confusion matrices using multiple thresholds selected by minimizing a weighted
loss FPR + α FNR for different values of α We also visualize the different operating points on the ROC curve.

Facilitation of human decision making: In the above, the probability threshold τ may need to be adjusted to reflect the
availability of various resources. However, the probability value predicted by the model may not easily be interpretable by
clinicians. As a solution, we suggest a piecewise linear mapping from the machine-generated probability to an interpretable one
as follows. Probabilities between 0 to τ were linearly transformed to probabilities 0-0.5, and probabilities from τ to 1.0 were
mapped to probabilities 0.5-1.

Implementation Notes
Computer coding was carried out in Python programming language version 3.828, and compute-resources from Google Colab29

were used. Deep learning models were implemented using TensorFlow v230 library. OpenCV v431 and scikit-image v0.1732

were used for image processing. We used random forest model from the scikit-learn v0.2433 library.

Results
The demographic, physiological and outcome on mechanical ventilation data are presented in Table 1.

Parameter Number of records with Summary
parameter value included

Age 302 59 (40-79) a

Sex 302 75.16% male
Day of presentationb 264 4 (3.75-5)a

CT severity score 302 15 (10-20) a

CRP 202 34.9 (13.77-78.5) a

D Dimer 191 278 (221.5-483) a

Ferritin 159 343 (155.75-713.95) a

Prevalence
Diabetes 300 19.53%
Obesity 300 16.22%
Hypertension 300 30.13%
Need for oxygen 302 39.74%
ICU admission 302 21.52%
Need for ventilation 302 11.59% required
Death 302 5.96% mortality

Table 1. Summary of parameters in the MGMCH dataset and the number of records that have the parameter
recorded. a Median (interquartile range) b Number of days passed from the symptom onset

The lung segmentation had a Dice coefficient of 96% on the test set. Inflammation segmentation had a dice coefficient of
58% on the test set using BCDU-Net while UNet++ improved the Dice coefficient to 60%. Even though the Dice coefficient for
inflammation segmentation is less compared to lung segmentation, in view of this being a somewhat subjective problem we
proceeded to check if ALLR work as well as CT severity score.

Random Forest XGBoost
Mean(std) 95% CI Mean (std) 95% CI

Model-CP 0.87 (0.06) 0.85 - 0.88 0.84 (0.09) 0.81 - 0.87
Model-CTSS 0.89 (0.06) 0.87 - 0.91 0.88 (0.07) 0.86 - 0.90
Model-ALLR 0.91 (0.06) 0.89 - 0.93 0.89 (0.07) 0.87 - 0.91

Table 2. Validation AUCs for 50 iterations for the three models.
Abbreviations: Model-CP: Model with clinical parameters as input, Model-CTSS: Model with clinical parameters and CT
severity score as input, Model-ALLR: Model with clinical parameters and ALLR as input.

The mean and standard deviation of AUCs calculated on the validation sets for the 50 iterations are given in Table 2. The
random forest models exhibited higher mean AUCs than XGBoost models. The mean AUC for the random forest model with
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Figure 2. Relative feature importance Panel A shows mean feature importance of the model having CT severity score and
clinical parameters as the input. Panel B shows mean feature importance of the model having ALLR and clinical parameters as
the input. The error bars show the standard deviations.

Figure 3. Mean ROC curve The figure shows the ROC curves obtained by taking the mean of validation ROC curves over
50 iterations for predicting need for ventilation for the three models. The dashed lines show the curve without the convex hull.
The blue markers on the curves show the operating points where the mentioned cost function is minimized.

clinical features and ALLR was 0.91 which is greater than that of the random forest model using only clinical features. All
the random forest models had a low standard deviation of 0.06 for AUC which indicated that the results are consistent. The
radiological features were ranked as the most important feature for both models using ALLR and CT severity score as shown in
Figure 2. The mean ROC curve for the 3 classification tasks using random forest models is given in Figure 3. It shows different
operating points corresponding to minimizing different loss functions. The models including radiological features had higher
TPR than the model using only clinical features at every operating point.

The mean and standard deviation of the confusion matrices for the three classification models using random forest models
are given in Table 3. The first column shows the loss function that is minimized. Increasing the weight of false negative rate in
the loss function, increased the true positive rate (TPR) however it reduced the true negative rate (TNR). For every loss function,
the model that used ALLR had better TPR and TNR.

In Supplementary section 4, we provide examples of two patients (one not requiring MV, and the other requiring MV) from
the MGMCH dataset demonstrating how the model can be used to forecast outcome.
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Model-CP Model-CTSS Model-ALLR
Pred -ve Pred +ve std Pred -ve Pred +ve std Pred -ve Pred +ve std

FPR
+
0.5*FNR

Actual
-ve

47.66
(0.882)

6.34
(0.118)

3.94
(0.07)

47.34
(0.877)

6.66
(0.123)

4.60
(0.08)

47.74
(0.884)

6.26
(0.116)

3.54
(0.06)

Actual
+ve

1.94
(0.28)

5.06
(0.72)

1.40
(0.2)

1.68
(0.24)

5.32
(0.76)

1.08
(0.15)

1.44
(0.21)

5.56
(0.79)

1.15
(0.16)

FPR
+
FNR

Actual
-ve

43.34
(0.80)

10.66
(0.20)

5.35
(0.1)

42.9
(0.79)

11.1
(0.21)

5.76
(0.1)

44.16
(0.82)

9.84
(0.18)

5.05
(0.09)

Actual
+ve

1.18
(0.17)

5.82
(0.83)

1.07
(0.15)

0.9
(0.13)

6.1
(0.87)

0.96
(0.14)

0.74
(0.11)

6.26
(0.89)

0.87
(0.12)

FPR
+
2*FNR

Actual
-ve

35.66
(0.66)

18.34
(0.34)

12.87
(0.2)

38.94
(0.72)

15.06
(0.28)

6.52
(0.12)

39.36
(0.73)

14.64
(0.27)

8.81
(0.16)

Actual
+ve

0.56
(0.08)

6.44
(0.92)

0.64
(0.09)

0.5
(0.07)

6.5
(0.93)

0.70
(0.1)

0.3
(0.04)

6.7
(0.96)

0.54
(0.07)

Table 3. Confusion matrices of predicting need for ventilation for validation sets of 50 iterations The values outside the
parenthesis show the number of records and the values in parenthesis are the normalized values. The confusion matrices were
calculated using thresholds that minimize the cost function mentioned in the first column.

Discussion
In this clinico-radiological prediction model for COVID-19 patients from LMIC setting, we showed that synthesis of clinical
data with automated CT scan derived lung involvement data (ALLR) performed marginally better in predicting the need
for ventilation than similar scores derived from clinical data and traditional CT severity score generated by a radiologist.
Importantly, the model output had a low false negative rate, which is important in the context of triage, as a patient with
high likelihood of clinical decline should not be triaged as low risk. Therefore, even without a radiologist input, the CT scan
could be utilised meaningfully towards model development. This could help in reducing the load on radiologists in generating
time-critical reports that incorporate detailed inflammation severity.

The image analysis involves the segmentation of lungs and subsequently diseased areas within the lung tissue. The technique
used is robust because they were validated on unseen data, and they were manually examined and the essential postprocessing
steps were added to the pipeline in order to make them more accurate. The automated calculation of ALLR from the segmented
volumes is a precise method of quantification of abnormality than the CT severity score, independent of observer based
variability.

There are multiple features that make this model unique. First, this is the first time that automated CT scan derived data
have been amalgamated with clinical features. Second, this takes the clinical and laboratory values on the day of the CT
scan and therefore the model represents the clinical picture of the patient on the day of imaging. Third, the outcome of
need-for-ventilation is clinically significant, both in terms of clinical outcome and also resource allocation in a healthcare
system. Fourth, the underlying segmentation tools were trained using labeled publicly available data from a different setting
external to India and the subsequent development of models utilized data from Indian patients. Therefore, the approach and
the results are potentially generalizable, at least in other LMIC settings. Fifth, the inclusion of the day-from-symptom-onset
potentially adds valuable information about the natural history of the disease (for example, the CT findings on day 7 has a
different meaning than the same CT finding on day 21 from pathological and natural-history-of-disease point of view). This is
not included in other current clinical models. Finally, the outcome classification results using the ALLR improve slightly over
that using the CT severity score. This indicates that the use of the ALLR in place of the CT severity score does not result in any
loss in performance. We investigated the possible relationship between the ALLR and the CT severity score. Under linear fit,
the correlation coefficient between those was 0.70. A quadratic model provided an improved fit (with root mean squared error
reducing to 0.118 from 0.131), and is shown in Supplementary Figure S1.

There are several limitations of the study. First, important physiological parameters on respiratory rate and SpO2 on air
presentation were not collected due to the retrospective nature of study. This should be added in the subsequent iterations
to make the prediction more robust and most likely will make the model significantly better. Second, Data collected from
single centre might create bias in the results that may arise from local clinician practice of selection of patients for mechanical
ventilation. Third, The dataset was developed during the first wave of COVID-19 in India. The changing nature and virulence
of the virus may alter the performance of the model and recalibration may be required in successive waves. Fourth, the
patients were not on therapy at the time of acquisition of the CT scan. Therefore, it is not clear whether the model can be
applied to patients already admitted to the hospital and who have been given proven therapy (e.g. systemic corticosteroid
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or IL-6 inhibitors). Fifth, it should be noted that specific lung pathology cannot be differentiated through this method and
therefore a radiologist should still view the images from the standpoint of traditional reporting. Finally, there is a need for a
strategy to be devised for scans done in the HRCT format, in order to extrapolate the model developed on volume CT scans
into high-resolution scans which are done with fewer sections. Furthermore, there is no detail demographic distribution data
regarding the publicly held datasets used in training segmentation models and that could introduce bias, although the effect
from demographic and age related variation of lung anatomy in the context of measuring inflammatory burden from COVID-19
is likely to be insignificant.

All these aspects, when taken together, can potentially lead to a robust and standardizable mathematical model to predict
individual patient level outcomes in order to achieve efficient triaging in hospitals and critical care units. It is important to
acknowledge here that as in other prediction models, different iterations will be needed in different settings and timings of the
pandemic to make this approach useful in future. Future prospective studies with expanded data from multiple centers can
improve the generalizability of model output, at the same time making it more robust.

Conclusions
In conclusion, a clinicoradiological model, developed by amalgamation of radiological and clinical parameters, produced in
line with the current study design, can predict important clinical outcome of need for invasive mechanical ventilation efficiently
and safely. Every setting or region can use this technique to predict the outcome of severe COVID-19 patients effectively.
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