Por favor, use este identificador para citar o enlazar este ítem: http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/5668
Relations of parameters for describing the epidemic of COVID-19 by the Kermack-McKendrick model
Toshihisa Tomie.
Acceso Abierto
Atribución-NoComercial-SinDerivadas
10.1101/2020.02.26.20027797
In order to quantitatively characterize the epidemic of COVID[-]19, useful relations among parameters describing an epidemic in general are derived based on the Kermack-McKendrick model. The first relation is 1/{tau}grow=1/{tau}trans-1/{tau}inf, where{tau} grow is the time constant of the exponential growth of an epidemic,{tau} trans is the time for a pathogen to be transmitted from one patient to uninfected person, and the infectious time{tau} inf is the time during which the pathogen keeps its power of transmission. The second relation p({infty}) {approx}1-exp(-(R0-1)/0.60) is the relation between p({infty}), the final size of the disaster defined by the ratio of the total infected people to the population of the society,and the basic reproduction number, R0, which is the number of persons infected by the transmission of the pathogen from one infected person during the infectious time. The third relation 1/{tau}end=1/{tau}inf-(1-p({infty}))/{tau}trans gives the decay time constant{tau} end at the ending stage of the epidemic. Derived relations are applied to influenza in Japan in 2019 for characterizing the epidemic.
www.medrxiv.org
2020
Artículo
https://www.medrxiv.org/content/10.1101/2020.02.26.20027797v1.full.pdf
Inglés
VIRUS RESPIRATORIOS
Aparece en las colecciones: Artículos científicos

Cargar archivos:


Fichero Tamaño Formato  
1109645.pdf459.48 kBAdobe PDFVisualizar/Abrir