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Abstract 

In order to quantitatively characterize the epidemic of COVID―19, useful relations among 

parameters describing an epidemic in general are derived based on the Kermack–McKendrick model. 

The first relation is 1/τgrow =1/τtrans−1/τinf, where τgrow is the time constant of the exponential growth 

of an epidemic, τtrans is the time for a pathogen to be transmitted from one patient to uninfected person, 

and the infectious time τinf is the time during which the pathogen keeps its power of transmission. The 

second relation p(∞ ) ≈ 1− exp(− (R0− 1)/0.60) is the relation between p(∞ ), the final size of the 

disaster defined by the ratio of the total infected people to the population of the society, and the basic 

reproduction number, R0, which is the number of persons infected by the transmission of the pathogen 

from one infected person during the infectious time. The third relation 1/τend = 

1/τinf−(1−p(∞))/τtrans gives the decay time constant τend at the ending stage of the epidemic. Derived 

relations are applied to influenza in Japan in 2019 for characterizing the epidemic.  

 

1.  Introduction 

We reported the understanding of the present status and forecasting of pneumonia by COVID―19 

in China which is supposed to have originated in Wuhan by analyzing the data up to February 11 

(ref.1). In ref.1, we clarified that the behavior of the epidemic was different in different regions and 

that the outbreak was well described by a Gaussian as was for influenza in Japan. We reported the 

following; 1. the epidemic in China passed the peak in the beginning of February, 2. the date of the 

epidemic peak was different by region and was the latest in Wuhan. For more than 10 days after our 

forecast, the epidemic closely followed our forecast. The new patients outside Wuhan decreased to 

less than 4 % of that at the peak around February 5.  

Although the epidemic in China is near the end, patients by COVID―19 are found in many other 

countries, and COVID―19 is still a big fear of the people over the world. In order to forecast the 

epidemic of COVID―19 in other countries, we need to theoretically characterize the COVID―19 

epidemic by fitting a model calculation to the data observed in China. We choose the Kermack―
McKendrick model (ref.2) for our analysis. The Kermack―McKendrick model was proposed as early 
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as 1927, but still, it is the basis of many modified models for describing epidemics.  

 

2. Present status of COVID―19 in China 

Figure 1 shows the changes of newly 

infected people of COVID―19 in China. The 

data were taken from refs. 3 and 4. Up to 40th 

day, i.e., February 9, the outbreak of the 

epidemic was described well by a Gaussian as 

was clarified in ref.1. The fitting Gaussians are 

850*exp(− ((x− 33)/8)2) for mainland China 

except Hubei province, 1100*exp( − 

((x − 34.2)/7)2) for Hubei province except 

Wuhan, and 1850*exp( − ((x − 38)/7)2) for 

Wuhan. In ref.1, we mentioned that influenza 

in Japan shifted from a Gaussian to an 

exponential decay at the skirt of the epidemic. 

The decay of COVID―19 in China was forecasted by assuming an exponential decay. Reference 1 

was written on February 12. Since that day, the epidemic of COVID―19 in China has been changing 

as forecasted. On February 20, the number of newly infected people was only one-thirtieth of that at 

the peak in mainland China except Hubei province. The fitted exponential decay curves are 350*exp(− 

(x− 42)/4.5) for mainland China except Hubei province, 800*exp(− (x− 40)/5) for Hubei province 

except Wuhan, and 2700*exp(−(x−40)/5) for Wuhan. 

We want to analyze the epidemic of COVID―19 in detail by applying a model. As a preparation of 

the analysis, useful relations of parameters describing an epidemic are derived in the present paper.  

 

3. Derivation of the relations among parameters 

Useful relations of parameters of an epidemic are Eqs. (7) to (10) in the following, which are derived 

from the Kermack―McKendrick model (ref.2). The number of susceptible people in the group is set 

as S0, the number of infected persons is I(t), the number of persons who have been infected and 

recovered to obtain immunity or have died is R(t), the number of persons who is susceptible but not 

yet infected is S(t). S0 = S(t) + I(t) + R(t). When the transmission power of the disease is set as β and 

the recovery rate from the infection is γ, the epidemic of the disease is given by the following three 

differential equations. 

dS(t)/dt  = − βS(t)I(t)  ------------ (1) 

dR(t)dt  = γ I(t)    ------------ (2) 

dI(t)/dt  = βS(t)I(t) −γ I(t)  ------------ (3) 

 
FIG.1; Present status of COVID―19 in China. The 

shapes of the epidemic in three regions changed 

from a Gaussian to an exponential decay around 

February 10. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 3, 2020. .https://doi.org/10.1101/2020.02.26.20027797doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.26.20027797


3 
 

We define the initial transmission time constant, τtrans, after which a pathogen is transmitted to one 

susceptible host in the early stage of the epidemic and the infectious time of a pathogen, τinf, after 

which the pathogen loses the power of transmission as follows, 

 τtrans = 1/βS0   ------------ (4) 

 τinf  = 1/γ.   ------------ (5) 

The basic reproduction number, R0, which is the number of persons infected by the transmission of a 

pathogen from one infected person during the infectious time, is given by 

R0  = τinf /τtrans.  ------------ (6) 

In the following, we see that an epidemic starts with exponential growth with a time constant τgrow 

given by 

1/τgrow  =1/τtrans−1/τinf,  ------------ (7) 

and decays exponentially with a time constant τend given by 

1/τend = 1/τinf−(1−p(∞))/τtrans. ------------ (8) 

Here, p(∞) is the final size of the disaster which is defined by the ratio of the total number of the 

infected people, R(∞), to the population of the society, S0. As shown later, p(∞) is approximated as, 

 p(∞)  ≈1−exp(−(R0−1)/0.60). ------------ (9) 

By using R0, Eq. (7) is rewritten as 

  τgrow  = τinf /(R0−1)  ------------ (10) 

R0, τinf, and p(∞) are parameters describing an epidemic. The above relations, Eqs. (7) to (10), are 

derived as follows. 

In the beginning of the epidemic, I(t) and R(t) are negligible compared to S0, and Eq.(3) becomes 

dI(t)/dt  ≈ (βS0−γ) I(t),   ------------ (11) 

and we get 

 I(t)  = exp(t/τgrow) I(0). ------------ (12) 

Thus, Eq. (7) is derived.  

The condition of spreading the disease is τgrow> 0, and then, R0 > 1. For this condition, S0 should be 

larger than the transmission threshold Sth given by 

 Sth  = γ /β.   ------------ (13) 

As infection proceeds, S(t) reduces. When βS(t)- γ becomes negative, the number of infected persons 

I(t) begins to decrease according to Eq. (3), and eventually, I(t) becomes 0. When I (t) is 0, the 

reduction of the number of the uninfected susceptible persons S(t) stops, as seen in Eq. (1), and S(t) 

converges to S(∞).  

By dividing Eq. (3) by Eq. (1), we get 

dI(t)/dS(t) = −1+Sth/S(t)  ------------ (14) 

and then we get 

 I(t)  = I(0)+S0−S(t)+Sth ln (S(t)/S0) ------------ (15) 
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Because I(∞)=0 and I(0) << S0, we get 

 S(∞) − S0 = Sth ln (S(∞)/S0). ------------ (16) 

We write the ratio of the population of the recovered person R (t) to S0 as p (t), 

 p(t) =R(t)/S0.   ------------ (17) 

By replacing S(∞)/S0 by p(∞), Eq. (16) becomes 

exp (−p(∞) R0)= 1−p(∞).   ------------ (18) 

In deriving Eq. (18), we employed the relation 

R0  = S0 /Sth,   ------------ (19) 

which is derived from Eqs. (4), (5), (6), and (13). The number p(∞) is referred as the “final size” and 

Eq. (18) is referred as the “final size equation”.  

At the shrinking stage of the spread of the disease, S(t) converges to S(∞). Then, Eq. (3) becomes, 

 dI(t)/dt = −(γ −βS(∞) I(t) ------------ (20) 

which gives exponential decay of the patients. 

 I(t)/dt = exp (−t/τend) Igrow  ------------ (21) 

The time constant of the decay τend is given by 

 1/τend = γ −βS(∞) 

  = γ −βS0(1−p(∞)) 

  = 1/τinf−(1−p(∞))/τtrans ------------ (22) 

Thus, Eq. (8) is derived. 

The final size equation was numerically solved 

and the result is shown by the solid curve in Fig.2. 

As R0 increases from 1, p (∞) increases from zero 

and saturates at a large R0. When R0 is larger than 

2.5, more than 90 % of people in the group are 

infected. As shown by the dotted curve in Fig.2, 

p(∞ ) can be approximated by the equation, 1-

exp(−(R0−1)/0.60). Thus, Eq, (9) is derived. 

 

4. Applying the model to the epidemic of 

influenza in Japan 

We apply the above model to the epidemic of influenza in Japan as cited in ref.1 as a reference for 

the general epidemic. Figure 3 shows the influenza epidemic in Japan over the past decade (ref.5). We 

choose influenza in 2019, which is referred as JpnInf2019 in this paper. In ref.1, we fitted a Gaussian 

to JpnInf2019. As shown by the red solid curve in Fig. 4, the model described above reproduces 

JpnInf2019 better than a simple Gaussian. The parameters were τtran s= 0.52 weeks and τinf = 1 week.  

From the values of τtrans and τinf for fitting, the reproduction number R0 = 1.92 and the final size 

FIG.2: Numerically calculated final size p(∞) of 

an epidemic as a function of re-production 

number, R0. 
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estimated by Eq. (18) is p(∞ ) =  0.77. Ministry of Health, Labor and Welfare of the Japanese 

government reported that the estimated number of patients who consulted doctors was about 12,000, 

000 over the country (ref. 6). This estimated value was only 10 % of the population of Japan and far 

smaller than p(∞) = 77 %. There are three possibilities for the reason. The first is that most patients 

did not go to a hospital and the real number of patients was 92,400, 000. The second is that only 1/8 

of the area in Japan was the reach of the pathogen. The third is a combination of the first and the 

second reasons. Thus, we realize the evaluation of the final size p(∞) is difficult. 

While reproduction of the epidemic by the model is fairly good near the peak of the epidemic, but 

at the far skirt, deviation of the data from the model is not negligible as seen in Fig.5 which shows a 

log plot of Fig.4.In the model fitting, the time constant was 1.15 weeks at the rising and the decay time 

constant was 1,7 weeks. Hence, τgrow calculated by Eq. (7) was 1.1 weeks. But in JpnInf2019, the 

reported number of patients increased exponentially with a time constant of 1.5 weeks and decreased 

exponentially at the ending stage with a time constant of 2.5 weeks. By increasing τtrans to 0.61 weeks 

  
FIG.3: Epidemic of infuenza in Japan   FIG4: Reproducing JpnInf2019 by the model 
over the past decade.    with τtrans= 0.52 weeks and τinf = 1 week. 

  
FIG.5: A log plot of Fig.4. At the skirt, the  FIG.6: If the observed τgrow and τend are used, 

increase and the decrease of the epidemic is  the model cannot reproduce the main part  

slower than the model.   of the epidemic. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 3, 2020. .https://doi.org/10.1101/2020.02.26.20027797doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.26.20027797


6 
 

from 0.52 weeks, the time constant of the rising of the epidemic can be increased to 1.5 weeks in the 

model calculation, but the width of the epidemic in the model calculation was too wider than the real 

one as shown in Fig.6.  

In all the cases of the epidemic, there should be a difference between the reported number of patients 

and the real number of infected people. Not all infected people will go to a hospital and not all patients 

are not inspected by medical institutes. In analyzing statistics, we assume the ratio of the reported 

number to the real number is constant during the epidemic, but often the assumption can be wrong. 

We expect the ratio is smaller in the beginning and at the ending of an epidemic. Then, the time 

constant of the “apparent rise” and “apparent ending” will be shorter than the real ones. However, this 

expectation was the opposite in Fig.5.  

The slower increase and the slower decrease at the skirt of the epidemic could suggest the 

transmission power β of the virus may change in time, which, we think, is not plausible. At present, 

we do not know the reason why the simple Kermack–McKendrick cannot reproduce the whole 

epidemic including the skirt parts. Thus, from the analysis of JpnInf2019 by the model described above, 

we learn that it is important to remember that the time constant of the “apparent” increase of the 

epidemic in the early stage does not re-produce the whole epidemic. 

The above information helps greatly to understand the to-be-planned analysis of COVID―19. 

 

5. Summary 

Useful relations of parameters of an epidemic are derived by following the Kermack–McKendrick 

model. The first relation is 1/τgrow = 1/τtrans−1/τinf. The final size of the disaster was numerically 

calculated and we found it is given by p(∞ ) ≈  1− exp(− (R0 − 1)/0.60). The third relation 1/τend = 

1/τinf −(1−p(∞))/τtrans gives the decay time constant τend at the last stage of the epidemic.  

By applying the model, we found that the epidemic of influenza in Japan in 2019 was re-produced 

by the parameters;τtrans = 0.52 week and τinf = 1 week and that τgrow observed in the early stage can 

be different from τgrow for re-producing the overall epidemic.  
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