Por favor, use este identificador para citar o enlazar este ítem: http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/4360
A Poisson Kalman filter for disease surveillance
Donald Ebeigbe.
Tyrus Berry.
Steven J. Schiff.
Timothy Sauer.
Acceso Abierto
Atribución-NoComercial-SinDerivadas
https://arxiv.org/pdf/2003.11194v3.pdf
An optimal filter for Poisson observations is developed as a variant of the traditional Kalman filter. Poisson distributions are characteristic of infectious diseases, which model the number of patients recorded as presenting each day to a health care system. We develop both a linear and nonlinear (extended) filter. The methods are applied to a case study of neonatal sepsis and postinfectious hydrocephalus in Africa, using parameters estimated from publicly available data. Our approach is applicable to a broad range of disease dynamics, including both noncommunicable and the inherent nonlinearities of communicable infectious diseases and epidemics such as from COVID-19.
arxiv.org
2020
Artículo
https://arxiv.org/pdf/2003.11194v3.pdf
Inglés
VIRUS RESPIRATORIOS
Aparece en las colecciones: Artículos científicos

Cargar archivos:


Fichero Tamaño Formato  
1106380.pdf963.09 kBAdobe PDFVisualizar/Abrir