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A Poisson Kalman filter for disease surveillance
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An optimal filter for Poisson observations is developed as a variant of the traditional Kalman filter.
Poisson distributions are characteristic of infectious diseases, which model the number of patients
recorded as presenting each day to a health care system. We develop both a linear and nonlinear
(extended) filter. The methods are applied to a case study of neonatal sepsis and postinfectious
hydrocephalus in Africa, using parameters estimated from publicly available data. Our approach is
applicable to a broad range of disease dynamics, including both noncommunicable and the inherent
nonlinearities of communicable infectious diseases and epidemics such as from COVID-19.
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I. INTRODUCTION

There has been significant recent interest in the model-based control of disease, specifically using prevention and
treatment as methods of control [1–5]. Such model-based frameworks have been instrumental in our understanding
of the dynamics and control of infectious diseases [6], and strategies for global public health policies [7]. Successful
applications of mathematical modeling and control depend on accurate determination of system states, where data
assimilation methods such as Kalman filters [8] play a crucial role in constraining the model with available data.
Although Kalman filters typically assume Gaussian distributed observations that have direct functional relationships

to the state variables, this is unlikely to be suitable for diseases with low rates of occurrence, as is the case in the
early or late stages of the spread of most infectious diseases. While a Poisson distribution with a large rate constant
can be well approximated by a Gaussian of the same mean and variance, the approximation breaks down when the
rates of occurrences are much smaller [9]. Even more importantly, the variance of a Poisson observation changes along
with its mean, whereas the mean and variance of a Gaussian are decoupled, and often the variance is assumed to be
constant (or at least unrelated to the mean) in the Kalman filtering context.
In this article, we argue that the standard application of Kalman filtering methods is poorly matched to data

available during disease surveillance. In particular, the assumption of Gaussian noise-perturbed observations is a
clear source of inaccuracy when used to model the arrival of patients at medical facilities. We develop a variant of
the Kalman filter that assumes Poisson observations, and show how to modify the traditional Kalman equations to
produce an optimal filter.
For one-dimensional systems, an optimal filter has been previously designed for Poisson observations [10], but has

not been generalized to multivariate systems. Moreover, in order to summarize the true distribution of the state ~xk at
time step k given the Poisson observations in [10], a very large number of variables needed to be stored and recalculated
at each step. In fact, the number of variables needed also grows very quickly with k (compared to the Kalman filter
where the number of variables tracked is constant in k). Instead, we propose a filter which is very similar to the
Kalman filter, but is adapted to the unique statistics of the Poisson observations. A related linear filter called the
Generalized Kalman Filter (GKF) was introduced in [11], which employed a fixed observation noise covariance matrix
that is optimal among all linear filters that are fixed in time. In contrast, we will derive the optimal time-varying
linear filter, and we will use the state estimate to update the observation noise covariance matrix dynamically.
In Section II, we first show that by choosing an appropriate observation map, the standard Kalman filter gives

an unbiased estimator for Poisson observations. This justifies using a Kalman filter in the disease modeling context,
as long as the observation map is well chosen. We then show how to modify the Kalman equations to produce an
optimal linear filter in the sense of minimizing the expected squared errors. We prove the optimality of this choice
in Appendix A. While the optimal filter nominally requires knowledge of the true state, we show empirically that
using the filter estimate of the state gives near-optimal performance. We call this approach the Poisson Kalman Filter
(PKF).
Recently, Li et al. [12] assimilate Poisson observations to carry out modeling of the coronavirus (COVID-19)

epidemic. Their modifications to the traditional Kalman filter are in the same spirit to those proposed here, in that
the observation noise covariance matrix V is designed to vary with the data. In this article, we derive the Kalman
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equations that lead to the optimal linear filter, and prove that the optimal choice for linear dynamics is to set Vk

to vary proportionally to the number of predicted cases. Nonlinear extensions of the Kalman filter follow standard
strategies of generalizing the linear formulas (e.g. the Extended and Ensemble Kalman filters [13]). We develop a
nonlinear Extended PKF (EPKF) in Section V suitable for contagious infectious disease.
These studies start from compartmental models which are built on the standard SIR model and its variants. The

SIR model tracks three variables which represent three populations, susceptible (S), infected (I), and recovered (R).
A key feature for communicable disease is that the rate of increase of the infected is proportional to the product of
the susceptible and infected populations, SI, a nonlinear interaction term that is motivated by the contagious nature
of the diseases being modeled.
In Section III below, we introduce an SIR model for noncommunicable diseases and show how to apply the Poisson

Kalman filter to track the model from example data from two endemic diseases affecting childhood health in Africa
– neonatal sepsis (NS) and postinfectious hydrocephalus (PIH) – in Sections III and IV. Although many of these
infections are noncommunicable, acquired during birth or from the environment afterwards, there is new evidence
supporting a role for communicable viruses [14]. To our knowledge, there is no existing computational framework
that embodies the interdependent dynamics of NS and PIH. We show how the use of the PKF and EPKF can fill this
need.
We discuss future directions both for more detailed study of NS and PIH, and for further extensions of the filtering

for infectious disease epidemics, in Section VI.

II. DATA ASSIMILATION FROM POISSON OBSERVATIONS

Estimating the current state of a dynamical system is a critical challenge when applying compartmental modeling
to disease forecasting and control. Data assimilation is a method of estimating the state from a time series of noisy
observations. In particular, for a linear system ~xk+1 = f(~xk), the Kalman filter [15] gives the optimal state estimate
(minimal variance) and also quantifies the uncertainty in the estimate. However, the Kalman filter was designed
for engineering applications where the observations are assumed to have a direct functional relationship to the state
variables, except perturbed by Gaussian noise.
There are at least three reasons why this assumption fails for typical disease surveillance. First, counts of individuals

with a disease are by definition nonnegative, contradicting the Gaussian model for uncertainty. Second, the size of
the Gaussian noise is decoupled from the population count, being the same magnitude for low populations as for large
populations. Finally, in order for the population to be the observed variable, one would have to make a survey, at
each time step k, of the entire population to directly observe Ik, the number of infected at time k. Since this is an
unrealistic proposal, the filtering method needs to be adapted to the type of observations that are practical for disease
surveillance. We will refer to this modification of the Kalman filter by the name Poisson Kalman Filter (PKF), which
we show to be unbiased and optimal among all linear filters.
We operate under that assumption that the disease population cannot be measured directly. In fact, a reasonable

model for observations of disease cases, for example those presenting at a hospital, is a Poisson process, whose rate is
proportional to the infected population. Assume that at time step k, the number of new infected patients Ikwill be
approximated by a Poisson random variable with rate λk,I = cIIk, where cI is a proportionality constant.
In a typical filtering problem we would assume that we are given direct observations, ~yk, of the form B~xk + ~νk

where ~νk are random variables representing observation noise. However, in the Poisson observation context, we instead
observe a pair of independent Poisson random variables with rates given by the components of B~xk. We will denote
this type of observation by

~yk ∼ Poisson(B~xk)

meaning that (~yk)i is Poisson with rate (B~xk)i. To be more precise we assume that, conditional to B~xk, the compo-
nents (~yk)i are independent Poisson random variables with density function,

P ((~yk)i = z | (B~xk)i = λ) =
λz

z!
e−λ =

((B~xk)i)
(~yk)i

((~yk)i)!
e−(B~xk)i .

The above conditional density makes it clear that ~yk and ~xk are not independent.
In the case of direct observations, one typically assumes that ~yk splits into a sum of two terms, the first of which

has deterministic dependence on ~xk and the second of which is independent of ~xk. However, for Poisson observations
this splitting is not possible. Despite this irreconcilable dependence between ~y and ~x the following Lemma shows that
if we appropriately center ~y, namely ~y − E[~y | ~x], the result is not correlated with ~x.
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Lemma II.1. Let λ be an arbitrary random variable and let z be a Poisson random variable with rate λ so that the
conditional density of z is P (z |λ) = λz

z! e
−λ. Then E[(λ− E[λ])(z − E[z |λ])] = 0.

Proof. We first apply the law of total expectation to compute E[z] = E[E[z |λ]] = E[λ] since λ is the expected value
of a Poisson random variable with known rate λ. We then apply the law of total expectation,

E[(λ − E[λ])(z − E[z |λ]])] = E[E[(λ − E[λ])(z − E[z |λ]]) |λ]]

= E[(λ − E[λ])E[(z − E[z |λ]]) |λ]]

= E[(λ − E[λ])(E[z |λ]− E[z |λ]])] = 0

where the second equality follows from the inner expectation being conditioned on λ and the third follows from the
linearity of the expectation.

Lemma II.1 turns out to be the key to deriving an optimal linear filter for Poisson observations. While Poisson
observations are a more realistic model for the type of data available in disease modeling, we now must design a filter
which can assimilate this data and produce estimates of the state variable ~xk.

A. The Poisson Kalman Filter (PKF)

A linear filter produces an estimate x̂k of the true state ~xk of the form,

x̂k = A1x̂k−1 +A2~yk

where A1, A2 are matrices. This is a more restricted class of filters, but we will be able to show that our filter is
unbiased, meaning E[x̂k] = ~xk, and is the optimal linear filter in the sense of giving the minimal squared error.
The PKF assumes a model of the form,

~xk = F~xk−1 +~bk + ~ωk−1 (1)

~yk ∼ Poisson(B~xk) (2)

where ~bk is a known deterministic forcing term, and ~ωk is dynamical noise with mean zero (E[~ωk] = 0) and known
covariance matrix, E[~ωk~ω

⊤

k ] = W . We also assume that the ~ωk are independent of ~xk, ~yk, and all other ~ωℓ for ℓ 6= k.
The PKF also assumes that model, F , and observation matrices, B, are known. We note that the dynamics F and
observation matrix B can also be allowed to change at each step (nonautonomous), but to simplify the notation we
assume they are constant.
Like the standard Kalman filter, the PKF is a two-step filter, meaning that it breaks down the estimation of x̂+

k

from x̂+
k−1 into a forecast step and an assimilation step. In the forecast step we apply the model to our current

estimate x̂+
k−1 to produce the forecast,

x̂−

k = F x̂+
k−1 (3)

and in the assimilation step we assimilate the new observation by,

x̂+
k = x̂−

k +Kk(yk − Bx̂−

k ). (4)

It is easy to see that this is a linear filter with A1 = (I −KkB)F and A2 = Kk. The filter is defined by the choice of
the matrix Kk which is called the gain matrix. Our first result is that any filter of the form (4) is unbiased.

Theorem II.2. Assume that E[x̂+
0 ] = ~x0, then for any choice of gain matrices Kk the two step filter defined by (3)

and (4) is unbiased, meaning E[x̂+
k ] = ~xk.

The proof of Theorem II.2 is straightforward and can be found in Appendix A.1. The gain matrix is determined by
a secondary set of computations which track the covariance matrix, P+

k for the estimate x̂+
k . The covariance matrix

is also evolved according to a two step evolution starting with a forecast step,

P−

k = FP+
k−1F

⊤ +W

which allows us to calculate the optimal gain matrix,

Kk = P−

k B⊤(BP−

k B⊤ + Vk)
−1 (5)
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and then we can complete the assimilation step

P+
k = (I −KkB)P−

k (I −KkB)⊤ +KkVkK
⊤

k .

While it may seem that Pk is only really necessary in order to compute the gain matrix Kk, the matrix Pk also gives
an error estimate for the state estimate.
The final component that is required is the Vk matrix in the formula for the optimal gain. In the standard Kalman

filter, Vk is the covariance matrix for the observation noise. However, in the PKF the variance of the observations
is equal to B~xk (meaning var((~yk)i) = (B~xk)i). So intuitively, we would expect to use Vk = diag(B~xk). The next
theorem states that this yields the optimal linear filter.

Theorem II.3. Among all linear filters, the filter given by (3) and (4) with gain matrix Kk given by (5) where
Vk = diag(Bxk) is optimal in the sense of minimal sum of squared errors. In other words,

∂Jk
∂Kk

= 0

where

Jk = trace(Pk) = E[||x̂k − ~xk||
2
2] =

∑

i

E[(x̂k − ~xk)
2
i ]

The proof of Theorem II.3 is closely related to Lemma II.1 and can be found in A.2. Unfortunately, the optimal
filter is not accessible since it requires access to the true state ~xk in order to define the optimal gain matrix. Instead,
since x̂k is an unbiased estimator (for any gain matrix) we approximate the optimal filter by using Vk = diag(Bx̂−

k ).
We call this approximation the Poisson Kalman Filter (PKF).

B. PKF Equations

The discrete-time Poisson Kalman filter (PKF) algorithm is given below. In order to connect with the potential
optimal control applications we include the control term Gk−1~uk−1. If there is no control this term can be dropped.
We also allow all the matrices to vary with time.

1 Dynamical system

~xk = max(0, Fk−1~xk−1 +Gk−1~uk−1 +~bk + ~wk−1), ~wk ∼ N (0, Wk)

~yk ∼ Poisson(Bk~xk)

E[~wk ~w
⊤

j ] = Wkδk−j

E[~yk~y
⊤

j ] = diag(Bk~xk)δk−j

E[wky
T
j ] = 0 (6)

where δk−j is the Kronecker delta function, such that δk−j = 1 if k = j, and δk−j = 0 if k 6= j. When the
state is close to zero the Gaussian noise may move the system into negative values, so at each step we take the
maximum of each component and zero. Note that diag(Bk~xk) is the true variance of the Poisson observation
~yk. However, in the filter below we set Vk = diag(Bkx̂

−

k ) since this is the best available estimate. We now
summarize the steps required to obtain the PKF estimates.

2 Initialization

x̂+
0 = E[~x0]

P+
0 = E

[

(~x0 − x̂+
0 )(~x0 − x̂+

0 )
⊤
]

(7)

3 Prior estimation (forecast step)

x̂−

k = Fk−1x̂
+
k−1 +Gk−1~uk−1 +~bk (8)

P−

k = Fk−1P
+
k−1F

⊤

k−1 +Wk−1 (9)

Vk = diag(max(δ, Bkx̂
−

k )) (10)
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4 Posterior estimation (assimilation step)

Kk = P−

k B⊤

k

(

BkP
−

k B⊤

k + Vk

)−1
(11)

x̂+
k = max

(

0, x̂−

k +Kk

(

~yk −Bkx̂
−

k

))

(12)

P+
k = (I −KkBk)P

−

k (I −KkBk)
⊤ +KkVkK

⊤

k (13)

Notice that before the diagonal matrix Vk is formed, we first take the maximum of the diagonal entries and a constant
δ. This is necessary because when the diagonal entries of Vk are too close to zero the filter can become numerically
unstable. The constant δ should be chosen to be small relative to the average value of the Bk~xk, and in all our
numerical experiments we set δ = 0.1. Finally, we note that in practice the initial estimates ~x+

0 and P+
0 are often

not available. However, the effect of these initial estimates on the accuracy of the state estimates decays to zero
exponentially as k → ∞, and often P+

0 is simply chosen to be a multiple of the identity matrix.

III. AN SIR MODEL FOR NONCONTAGIOUS DISEASE IN A RESTRICTED POPULATION

Severe systemic bacterial infection in the neonatal period, neonatal sepsis (NS), accounts for an estimated 680,000
- 750,000 neonatal deaths per year worldwide [16] - more than childhood deaths from malaria and HIV combined [17].
The most common brain disorder in childhood is hydrocephalus, and the largest single cause of hydrocephalus in the
world is as a sequelae of NS [18], accounting for an estimated 160,000 yearly cases of postinfectious hydrocephalus
(PIH) in infancy [19]. The microbial agents responsible for this enormous loss of human life have been poorly
characterized [20], although next-generation molecular methods show promise to improve the identification of causal
agents [14]. Both NS and PIH occur disproportionately in the developing world, and most of the PIH cases will
die in childhood without adequate treatment, substantially compounding the effective mortality due to NS and its
tremendous burdens on societies [21, 22].
We expect a natural application of the PKF will be to SIR modeling. Consider a discrete-time SIR model for

neonatal sepsis with three classes: Sk is the susceptible population at time k, Ik the infected population, and Rk the
recovered population. (Later, in Section IV, the model will be expanded to include a postinfectious hydrocephalic
class.) Since there are many unmodeled factors which affect the adult population, and the feedback of neonatal
infection into the birth rate takes place on a relatively long time scale, we do not include the adult population in the
model. Thus, Sk, Ik, Rk represent neonatal and infant populations. Since we are modeling neonatal infections, the
susceptible and infected classes are neonatal and, Sk+Ik represents the neonatal population. The recovered class, Rk,
will track those that recover from sepsis for a period of time that can be chosen by the modeler as will be described
below.
Modeling only the neonatal/infant populations requires several deviations from the standard SIR model. First, the

birth rate is not proportional to any of the model populations, and is instead a forcing, bk, which introduces new
population into the susceptible class at each time step. Moreover, there are now three ways to leave the susceptible
class: (1) a neonatal mortality rate d, due to factors other than infection (this will affect the two neonatal classes,
Sk and Ik), (2) an infection rate a, which feeds into the infected class, and (3) a ‘grow-up’ rate gS , which signifies no
longer being susceptible to neonatal infection. The model is:

Sk+1 = (1− d− a− gS)Sk + bk (14)

Ik+1 = (1− d− dI − c)Ik + aSk (15)

Rk+1 = (1− dR − gR)Rk + cIk. (16)

Notice that the gS rate removes neonates from the model entirely, so effectively the grow-up rate gS will control the
length of time that we consider to be ‘neonatal’. Given a time period TS for susceptibility, we set gS = 1/TS, which
makes the simplifying assumption that the susceptible population is always equally distributed across different ages.
The grow-up rate gR controls the length of time that infants in the recovered class are tracked, so that gR = 1/TR

where TR is the amount of time we track the recovered class. The two parameters gS , gR control the two time scales for
susceptibility and recovery (which will become more significant later when we consider the longer time-scale possibility
of developing hydrocephalus), and c is the rate of recovery from infection.
With the state variable ~xk = (Sk, Ik, Rk)

⊤, the matrix form of the evolution is

~xk+1 = F~xk +~bk
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where

F =





1− d− a− gS 0 0
a 1− d− dI − c 0
0 c 1− d− gR




~bk =





bk
0
0





If the birth rate is assumed to be constant bk ≡ b, the steady state populations can be explicitly solved. Setting
S∞ ≡ Sk+1 = Sk in susceptible population in (14) we can solve for S∞ = b

d+a+gS
. Substituting this for S∞ = Sk in

(15) and setting I∞ ≡ Ik+1 = Ik in (15) we can solve for I∞ and similarly we can solve for R∞ giving steady state
solutions,

S∞ =
b

d+ a+ gS
(17)

I∞ =
ab

(d+ dI + c)(d+ a+ gS)
(18)

R∞ =
abc

(dR + gR)(d+ dI + c)(d+ a+ gS)
(19)

These steady state solutions have important public health implications on the time scale where the birth rate is
approximately constant. First, S∞ determines the scale of public health improvement if susceptibility can be reduced
(prevention). Second, I∞ determines the resources needed to meet the average infection burden.

A. Case Study: Neonatal sepsis in Uganda

Publicly available statistics can be used to approximate parameters for NS in Uganda during the time frame 2014-
2015. We consider a discrete time step (the time between steps k and k + 1) of one day and a neonatal period of
TS = 28 days. From [23] we find a 2015 birth rate of 1665000 per year for Uganda, which for a daily model yields
b ≈ 4562. Using 2014 statistics for neonatal sepsis in sub-Saharan Africa, we find a neonatal mortality rate of 29 per
1000 with 17%-29% attributable to sepsis [22]. For simplicity we assume that the neonatal mortality rate of 29 per
1000 can be divided into 7 attributable to sepsis (≈ 23% of neonatal mortality, the midpoint of the 17%-29% range)
and 22 attributable to other causes.

Since we assume the neonatal period is TS days, we convert the neonatal mortality rate due to factors other than
sepsis into a daily rate by setting d = 22/1000/TS. The daily neonatal mortality rate due to sepsis is then 7/1000/TS,
however this is not dI because the dI variable applies only to the infected class (whereas d applies to both the
susceptible and infected classes, and thus is a rate for the entire neonatal population). That is, dI represents the
daily rate of mortality due to sepsis as a percentage of the population that has sepsis (rather than 7/1000/TS which
is the daily rate as a percentage of the entire population). So before we can determine dI , we first must determine the
infection rate a. Infection rate estimates can vary widely based on methodology ([22] quotes a range of 5.5 - 170 per
1000 live births). Based on the estimate of one of the authors (SJS) who is a physician conducting medical research
on these infants in Uganda, there is a range of 30 - 60 per 1000 live births in that nation. Conservatively assuming
30 per 1000, we take a = 30/1000/TS as a daily rate of infection. Now the constant dI can be determined. We stated
above that 7 of the 1000 will die from sepsis, meaning that 7 of the 30 who get sepsis will die from it. Thus, we find
that dI = 7/30/TS is the daily rate of death due to sepsis among those that already have sepsis. This immediately
gives us the recovery rate: 7 of the 30 who get sepsis will die from sepsis, and 30(22/1000) will die from non-sepsis
causes. The remaining 30 − 7 − 30(22/1000) = 22.34 will recover, establishing the recovery rate c = 22.34/30/TS.
Note that

c =
30− 7− 30(22/1000)

30TS

=
1

TS

−
7

30TS

−
22/1000

TS

= gS − dI − d

so in fact c is chosen to insure that all of the infected classes leave within the neonatal day period.

The infant mortality rate m2, which covers mortality of the first year after birth, infancy or Ti, can also be
derived from data. Consider a tracking time for the recovered population of this first year minus the neonatal period,
TR = Ti−TS (we assume that the recovered population is entirely outside the 28 day neonatal period). For the death
rate in the recovered class we start with the infant mortality rate of 77 per 1000 (in the first year [22]) and subtract
the 29 per 1000 neonatal mortality rate to find dR = 48/1000/TR.
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• The neonatal time period, TS (28 days)

• The infant time period, Ti (365 days)

• Daily birth rate, b (4562)

• Neonatal mortality rate, m1 (0.0029)

• Percentage of neonatal mortality due to sepsis, s (0.23)

• Infection rate, a (0.0030)

• Infant mortality rate, m2 (0.0077)
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FIG. 1. Left: Summary of the inputs to the model for infant sepsis. Right: Simulation of the model for infant sepsis in Uganda
assuming constant birth rate and starting from the zero initial condition, (S0, I0, R0) = (0, 0, 0).

We summarize the inputs to the model in Fig. 1 then compute the parameters d, dI , dR, c, TR, gS , gR by

gS =
1

TS

gR =
1

TR

d =
(1− s)m1

TS

dI =
sm1

aTS

c = gS − d− dI dR =
m2 −m1

TR

where s is the fraction of neonatal mortality due to sepsis. The steady state values for the model with these parameters
are S∞ = 121422, I∞ = 3643, and R∞ = 31152. We note that the steady state number of infected shows consistency
with reported values [23]. The recovered class is now susceptible to developing PIH.

IV. SIRH: MODELING THE HYDROCEPHALIC POPULATION

We now turn to a model that specifically links neonatal infection and postinfectious hydrocephalus (PIH). The
essential idea is that those that have recovered from sepsis are now susceptible to developing hydrocephalus. The
constant h represents the rate at which recovered infants move from the recovered class Rk to a new hydrocephalic
class Hk, leading to the equations

Sk+1 = (1− d− a− gS)Sk + bk

Ik+1 = (1− d− dI − c)Ik + aSk (20)

Rk+1 = (1− dR − gR − h)Rk + cIk

Hk+1 = (1− dR − dH)Hk + hRk.

The hydrocephalic class is subject to an additional mortality rate due to hydrocephalus, dH , which requires recalibrat-
ing the recovered rate, dR, so that it does not include deaths due to hydrocephalus. We set dR = (m2−m1−pdHTR)/TR

where m2 is the infant mortality rate, m1 is the neonatal mortality rate, p is the rate of PIH in the total population
under consideration (discussed in Section IVA below), and dHTR is the rate of death of those who develop PIH during
infancy (dH is the daily rate and TR is the remainder of the infancy period). Finally, we note that the steady state
value of the recovered class changes from the SIR model due to the rate h, and the new steady state along with the
hydrocephalic steady state are given by

R∞ =
abc

(dR + gR + h)(d + dI + c)(d+ a+ gS)
(21)

H∞ =
hR∞

dR + dH
=

abch

(dR + gR + h)(d+ dI + c)(d+ a+ gS)(dR + dH)
(22)

We now return to our case study of modeling PIH in Uganda.
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FIG. 2. Left: Simulation of the SIRH model for Uganda starting from the zero initial condition. Right: Plot of the cumulative
deaths from sepsis and hydrocephalus in the simulation. The horizontal lines are spaced so that their intersections with the
curves are 365 days apart and indicated the cumulative deaths at times one year apart. The model predicts approximately
11000 annual deaths due to sepsis and approximately 3300 annual deaths due to PIH.

A. Case Study: Infant hydrocephalus in Uganda

The first parameter to consider is h, the rate of developing postinfectious hydrocephalus (PIH). In [22] it is reported
that the incidence of PIH is 3-5 per 1000 live births. We will take the low estimate of 3 per 1000 setting p = 3/1000,
since it will be shown to be more consistent with other statistics below. Recall that above we estimated that for 1000
live births there are 30 cases of sepsis, and 22.34 of those recover. Since only recovered sepsis cases can develop PIH,
this implies a rate of developing hydrocephalus of

h = 3/22.34/TR.

The death rate due to hydrocephalus is highly dependent upon treatment. The untreated death rate is estimated at
50%, while treatment can reduce this to 25%. We assume an overall death rate of 33% [24] and we set

dH = 1/3/TR.

Finally, we recalibrate the death rate for those recovering from sepsis by removing the deaths due to hydrocephalus
(since those are accounted for in the Hk variable). So we set

dR =
m2 −m1 − p dHTR

TR

=
.0077− .0029− .0003 1

3

TR

=
.0047

TR

The results shown in Fig. 2 predict a steady state of approximately 10000 ongoing cases of PIH with an annual
PIH incidence of approximately 4000 per year (365 ∗ h ∗R∞), and annual deaths due to PIH of approximately 3300,
consistent with existing estimates [21].

B. PKF Simulations

Using the SIRH model described in Section IV, we evaluate the performance of the PKF when the observations
follow a random Poisson distribution with known rates λk,I = cIIk and λk,H = cHHk, which represent the number
of infants with sepsis and the number of infants with hydrocephalus that show up at the hospital. Our observations
can be written as

yk =

(

yk,1
yk,2

)

= Poisson

(

λk,I

λk,H

)

, where

(

λk,I

λk,H

)

= Bxk =

(

0 cI 0 0
0 0 0 cH

)







Sk

Ik
Rk

Hk






.

and we start the system at the equilibrium values.



9

500 600 700 800 900 1000
Time, k (days)

0

1

2

3

4

5
S

us
ce

pt
ib

le

105

Truth, S
k

PKF
KF

500 600 700 800 900 1000
Time, k (days)

3

4

5

6

7

8

9

10

R
ec

ov
er

ed

104

Truth, R
k

PKF
KF

500 600 700 800 900 1000
Time, k (days)

0

0.5

1

1.5

2

2.5

3

3.5

4

In
fe

ct
ed

104

Truth, I
k

Rescaled Cases, y
1
/c

1

PKF
KF

500 600 700 800 900 1000
Time, k (days)

0

0.5

1

1.5

2

2.5

3

3.5

4

H
yd

ro
ce

ph
al

ic

105

Truth, H
k

Rescaled Cases, y
2
/c

2

PKF
KF

500 550 600 650 700
Time, k (days)

0

0.5

1

1.5

2

H
yd

ro
ce

ph
al

ic

105

Truth, H
k

Rescaled Cases, y
2
/c

2

PKF
KF

800 850 900 950 1000
Time, k (days)

2

2.5

3

3.5

4

H
yd

ro
ce

ph
al

ic

105

Truth, H
k

Rescaled Cases, y
2
/c

2

PKF
KF

FIG. 3. Comparison of the PKF (optimal variable gain) and the Kalman filter (optimal fixed gain) for the SIRH model with
Poisson observations of the infected and hydrocephalic populations. The top and middle panels compare the true S, I, R and H
values (black) to the PKF (red, dashed) and Kalman filter (blue, dotted) estimates. Infected and hydrocephalic also show the
observations (green, circles) rescaled by dividing by the constants c1, c2 respectively. The bottom row of panels are expanded
versions of the H plot in middle right panel, enlarged to show detail. When the number of cases is large, the KF estimate of H
is very close to the observations, whereas the PKF adjusts to the larger observation variance and produces better estimates.
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FIG. 4. The Poisson rates (black) of I and H and the observed case numbers (red, circles) from the Poisson distribution.

The simulation in Fig. 3 was run with system noise W = diag(144, 1, 1, 10) × 107 and the constant daily birth
rate b = 4562, while setting the sepsis and hydrocephalus proportionality constants as cI = 0.2/TS and cH = 0.6/TR

respectively. The idea behind these values is that if 20% of total sepsis cases seek care over the entire TS period of sepsis
susceptibility, then the daily rate of arrivals would be 0.2/TS multiplied by the number of true sepsis case (20% was
chosen purely for purposes of simulation). In Fig. 3 we see that the PKF (red, dashed curves) gave good estimates
of the true susceptible, infected, recovered, and hydrocephalic populations using only random Poisson distributed
observations of the sepsis and hydrocephalic populations.

Fig. 3 also compares the PKF to a Kalman filter (blue, dotted curves) which was given the optimal fixed observation
noise covariance matrix, Vconst = diag(Bx) where x is the time average of the state variables. The disadvantage of
the fixed gain is that when the number of infected or hydrocephalic is large the variance of the observations will be
larger than the average value. This means that the Kalman filter will underestimate the observation variance and use
an oversized gain. This is shown in Fig. 3 where the Kalman filter estimates closely follows the observations when
the number of infected or hydrocephalic are large. The PKF dynamically adjusts the observation covariance matrix
based on the state estimate in order to prevent this. This is further shown in Fig. 5 which compares the root mean
squared error (RMSE) for the PKF and the Kalman filter for various levels of system noise. Fig. 5 also compares the
PKF, which uses the filter estimate to determine Vk, to an oracle PKF which uses the true state for Vk and we see
that their performance is almost identical even at high noise levels.

Finally, we note that the PKF has the largest advantage at high noise levels. This is because the SIRH system
is a stable linear system, so that noise is the only unstable component of the dynamics. In the absence of noise,
no filter would be necessary since all trajectories would converge to the equilibrium regardless of observations. This
suggests that a generalized PKF (such as the Extended PKF considered below) would have an advantage for nonlinear
dynamics with unstable directions even in the absence of system noise.

V. AN EXTENDED POISSON KALMAN FILTER FOR CONTAGIOUS DISEASE

So far we have considered a linear model for NS, which is sufficient for noncontagious infections. However, conta-
gious disease models typically contain an nonlinearity that models the contagious spread. In order to broaden the
applicability of the PKF we now show that it also offers improvements for these nonlinear models by using a standard
approach to extend the Kalman equations to nonlinear dynamics. Moreover, because there are potential mechanisms
for contagious infections contributing to NS [14], modeling these infections requires a nonlinear system. As in the
classical SIR model we assume that the contagious spread will be simultaneously proportional to the both the number
of susceptibles and the number of infected and so we model the number of contagious cases at time k as βSkIk, where
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FIG. 5. Comparison of the RMSE of the PKF (red, optimal variable gain) and the Kalman filter (blue, optimal fixed gain)
as function of the system noise. We also compare to an oracle PKF (black, dashed) which is given the optimal choice of
Vk = diag(B~xk). System noise is quantified as a multiple of the base noise level W . The RMSE is averaged over 106 filter
steps.

β is infectivity. Introducing this term to the SIRH model we have

Sk+1 = (1− d− a− gS)Sk − βSkIk + bk

Ik+1 = (1− d− dI − c)Ik + aSk + βSkIk (23)

Rk+1 = (1− dR − gR − h)Rk + cIk

Hk+1 = (1− dR − dH)Hk + hRk.

The state of the nonlinear model is ~xk+1 = fk(~xk) where ~xk = (Sk, Ik, Rk, Hk). When the birth rate is constant bk = b
we can write fk = f and the system can be considered autonomous, but we also allow nonautonomous dynamics as
long as each fk is known. This model is of significant interest since estimating the a and β parameters from data
would help determine the role of contagious spread in NS.
A standard method for lifting the Kalman filter to the nonlinear setting is the Extended Kalman Filter (EKF)

[25]. The EKF uses the nonlinear dynamics to produce the forecast x−

k+1 = fk(x
+
k ), and a linear approximation to

the dynamics is used for forecasting the covariance matrix P−

k+1 = FkP
+
k F⊤

k +W . To define Fk the EKF linearizes

the dynamics around the current state estimate, setting Fk = Dfk(x̂
+
k ). This approximates the nonlinear dynamics

as a nonautonomous linear system for the purposes of forecasting the covariance estimates. In the example below we
apply the EKF using

Fk = Dfk(x̂
+
k ) =









1− d− a− gS − βI+k −βS+
k 0 0

a+ βI+k 1− d− dI − c+ βS+
k 0 0

0 c 1− dR − gR − h 0
0 0 h 1− dR − dH









.

Since the PKF is also based on the Kalman equations, we can use this same idea to extend the PKF to nonlinear
systems which we call the Extended PKF (EPFK).
In Fig. 6 we simulate the system (23) with β = 10−6 initialized at the noncontagious equilibrium found in Section IV

(all other parameters are the same as in Section IV). This simulates the introduction of a contagious source of disease
to a system that had stabilized at the noncontagious equilibrium. To demonstrate the advantage of the EPKF over
the non-Poisson version, we assume that the EKF is given the optimal fixed gain for the noncontagious equilibrium.
Fig. 6 shows that as the number of infected and hydrocephalic cases increase the EKF estimate becomes very noisy,
since it is underestimating the observation variance and as a result follows the observations too closely. This shows
how the EPKF is able to automatically adapt to the new equilibrium.
We also compare the EPKF to the standard EKF using the optimal fixed gain for the contagious equilibrium,

starting from the contagious equilibrium. Fig. 7 shows that the EPKF has the largest advantage at high system
noise levels (as in Fig. 5) due to the absence of unstable directions in the deterministic dynamics near equilibrium.
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FIG. 6. Comparison of the Extended PKF (optimal variable gain) and the Extended Kalman filter (optimal fixed gain for
the noncontagious equilibrium) for the contagious SIRH model with Poisson observations of the infected and hydrocephalic
populations. The top and middle panels compare the true S, I, R and H values (black) to the PKF (red, dashed) and Kalman
filter (blue, dotted) estimates. Infected and hydrocephalic also show the observations (green, circles) rescaled by dividing by
the constants c1, c2 respectively. The system is initialized at the noncontagious equilibrium and run forward with β = 10−6

simulating the introduction of a contagious source of infection which moves the system to a new equilibrium.

This suggests that the EPKF would have an even more significant advantage for chaotic systems. Also, as in Fig. 5,
we compare the empirical EPKF, which uses the state estimate to determine the observation variance, to an oracle
version of the EPKF that uses the true state to determine the observation variance, and again the performance is
very similar.

Finally, we note that two closely related alternative approaches to applying the Kalman filter to nonlinear dynamics
are the Ensemble Kalman Filter (EnKF) [25] and Ensemble Adjustment Kalman Filter [26]. Both of these methods
use an ensemble forecast instead of linearizing the dynamics to estimate P−

k+1. Since the EnKF and EAKF are also
based on the Kalman formulas the PKF method can be applied just as easily to these methods.

This approach is closely related to the recent work of [12] applied to COVID-19 with Poisson observations. There,
an EAKF was used with a heuristically chosen observation covariance Vk which was proportional to the square of the
observations. In fact, [12] also suggested an alternative of using Vk proportional to the observations. Our analysis of
the PKF shows that in fact the optimal choice for linear dynamics is to set Vk equal to the predicted observations, as
we propose in the EPKF. In fact, our analysis of a nonlinear contagious model in this section suggests that [12] were
very close to the optimal approach.
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FIG. 7. Comparison of the RMSE of the EPKF (red, optimal variable gain) and the EKF (blue, optimal fixed gain) as function
of the system noise. We also compare to an oracle EPKF (black, dashed) which is given the optimal choice of Vk = diag(B~xk).
System noise is quantified as a multiple of the base noise level W . The RMSE is averaged over 106 filter steps.

VI. CONCLUSION

The mathematical methods of filtering and control originated with linear models, direct observations, and Gaussian
noise. However, these assumption may not be appropriate in the context of disease modeling, where the observation of
cases of communicable and noncommunicable disease often present as Poisson processes. Unfortunately, the customary
Kalman filter is not well suited to assimilate such Poisson occurrences and estimate the true number of underlying
cases. The Poisson Kalman Filter (PKF) is an optimal filter for such surveillance.

The linear PKF is a very general filter suitable for a broad range of noncommunicable disease observations where
the nonlinear interaction of susceptible and diseased individuals is not an inherent component of disease initiation
(including noninfectious disease such as diabetes or stroke). We extended our findings to encompass the nonlinear
interactions of susceptible and infected individuals typical of contagious disease through an extended PKF or EPKF.

We also created, to our knowledge, the first SIRH compartmental model that can be used in the surveillance of
neonatal sepsis and postinfectious hydrocephalus, endemic disease that causes tremendous numbers of yearly global
deaths in the developing world. In particular, we incorporated both the noncommunicable and communicable dynamics
that have been observed in these infant infections.

Additionally, our case study of sepsis and hydrocephalus suggests many promising directions for future development.
If a more careful tracking of cases is desired, the neonatal and infancy periods can be segmented in to multiple stages.
For example, it is well known that the infections that are acquired perinatally from the mother, so called early onset
sepsis, are manifest within the days of the first week of life. Infections during the subsequent weeks of the neonatal
period (first 4 weeks) are environmentally acquired and are typically a very different spectrum of organisms. Therefore
S(0i) could represent susceptible at (0 − i)-days after birth, and S(ij) could represent susceptibles from (i − j)-days
after birth, with varying rates and risks from sepsis at different stages of development. Another critical factor in sepsis
and hydrocephalus cases is environmental variables such as rainfall [27], which suggests that a full spatiotemporal
model will be necessary to more fully represent these dynamics. Recent findings [14] demonstrate that more than one
infection (co-infection) can be found in some of these infants – perhaps even a mixture of noncommunicable bacteria
and communicable viruses – demonstrating that a mixed linear and nonlinear model would be required to represent
such co-infections. A spatiotemporal model would allow the optimal control to consider multiple methods of control
and determine ideal locations and times to apply each.

The recent coronavirus (COVID-19) epidemic is one where Poisson dynamics are required in the modeling and
data assimilation [12]. In this article, we derive the Kalman equations that lead to the optimal linear filter, and
propose that the optimal choice is to set the observed covariance equal to the predicted observations as proposed in
the nonlinear EPKF.
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1. Recursive weighted least squares estimator with Poisson observations

The measurement equation of a linear stochastic discrete-time dynamic system with indirect measurements of the
state is given as

xk = xk−1

yk = zk, zk ∼ Poisson(λk = Bxk) (A1)

where xk ∈ R
n, yk ∈ R

m are the state vector and measurement vector respectively, and B ∈ R
m×n is a known

deterministic matrix. The measurement variable zk ∈ R
m follows a random Poisson distribution

p(zk|xk) =
(Bxk)

zk

zk!
e−(Bxk), z = 0, 1, 2, . . . (A2)

where the rate λk = Bxk ≥ 0. We note that the positive real rate λk equals the expected value E[zk] and variance
Var(zk) such that

E[zk] = Var(zk) = λk

In our case, we assume that the state x is non-negative. We also assume that each Poisson random variable (zk)i
has a rate that is only dependent on the corresponding state (xk)i, such that E[(zk)i] = ci(xk)i where ci ∈ R+ are
known deterministic parameters. A linear recursive estimator can be written as

yk = zk (A3)

x̂k = x̂k−1 +Kk (yk −Bx̂k−1) (A4)

where Kk is the optimal gain matrix to be determined.

Theorem A.1. The estimator of (A4) is an unbiased estimator of xk; that is, E[x− x̂k] = 0

Proof. Calculating the estimation error mean, we write

E[ǫx,k] = E[x− x̂k]

= E [x− x̂k−1 −Kk (yk −Bx̂k−1)]

= E [ǫx,k−1 −Kk (zk −Bx̂k−1)]

= E [ǫx,k−1 −Kk (zk −Bx+Bx−Bx̂k−1)]

= E [ǫx,k−1 −KkBǫx,k−1 −Kk (zk −Bx)]

= E [(I −KkB)ǫx,k−1 −Kk(zk −Bx)]

= (I −KkB)E [ǫx,k−1]−Kk (E[zk]−Bx) (A5)

So since E[zk] = Bx and inductively we assume E [ǫx,k−1] = 0, we have E[ǫx,k] = 0. Therefore (A4) is an unbiased
estimator. This property holds regardless of the value of the gain matrix Kk. This implies that, on average, the state
estimate x̂ will be equal to the true state x, when measurements – that follow a Poisson distribution whose rate is
dependent on the state – are taken.

Theorem A.2. Among all linear filters, the filter given by the linear estimator of A4 with gain matrix Kk given by

Kk = Pk−1B
T
(

BPk−1B
T + Vk

)−1

is optimal in the sense of minimal sum of squared errors when Vk = diag(Bxk). In other words,

∂Jk
∂Kk

= 0

where

Jk = trace(Pk) = E[||x̂k − ~xk||
2
2] =

∑

i

E[(x̂k − ~xk)
2
i ]
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Proof. Using (A5), we solve for the estimation error covariance Pk as

Pk =E
[

ǫx,kǫ
T
x,k

]

=E

{

[(I −KkB)ǫx,k−1 −Kk(zk −Bx)]
[

ǫTx,k−1(I −KkB)T − (zk −Bx)TKT
k

]T
}

=(I −KkB)E[ǫx,k−1ǫ
T
x,k−1](I −KkB)T − (I −KkB)E[ǫx,k−1(zk −Bx)T ]KT

k

−KkE[(zk −Bx)ǫTx,k−1](I −KkB)T +KkE[(zk − Bx)(zk −Bx)T ]KT
k (A6)

Since the estimation error at time k − 1 given by ǫx,k−1 = x− x̂k−1 is independent of the measurement zk at time k,
we have

E[ǫx,k−1(zk −Bx)T ] = E[ǫx,k−1]E[(zk −Bx)T ]

= 0

since the expected value E[ǫx,k−1] and E[zk −Bx] are both zero. More generally, when x is a random variable, ǫx,k−1

may not be independent of the measurement zk, however, the above expectation is still zero since,

E[ǫx,k−1(zk −Bx)T ] = E[(x− x̂k−1)(zk −Bx)T ]

= E[E[(x − x̂k−1)(zk −Bx)T |x]]

= E[(x− x̂k−1)E[(zk −Bx)T |x]]

= E[(x− x̂k−1)(E[zk |x]−Bx)T ]

= E[(x− x̂k−1)(Bx−Bx)T ]

= 0

by the law of total expectation. Therefore, (A6) reduces to

Pk =(I −KkB)E[ǫx,k−1ǫ
T
x,k−1](I −KkB)T +KkE[(zk −Bx)(zk −Bx)T ]KT

k (A7)

Using the fact that Bx = E[zk], we rewrite (A7) as

Pk =(I −KkB)E[ǫx,k−1ǫ
T
x,k−1](I −KkB)T +KkE[(zk − E[zk])(zk − E[zk])

T ]KT
k (A8)

Recall that for a random variable Y with mean E[Y ], the ith central moment of Y , which is written as

ith central moment of Y = E[(Y − E[Y ])i]

equals its variance when i = 2 (see Chapter 2 of [25]). Therefore,

E[(zk − E[zk])(zk − E[zk])
T ] = Vk (A9)

where Vk ∈ R
m×m, which is written as Vk = diag(Bxk), is the covariance of zk. Substituting (A9) into (A8) gives

Pk =(I −KkB)Pk−1(I −KkB)T +KkVkK
T
k (A10)

which is the recursive formula for determining the covariance of the least squares estimation error. We then minimize
the sum of the estimation error variances at time k. From the cost function

Jk = trace(Pk) (A11)

we write

∂Jk
∂Kk

= 2(I −KkB)Pk−1(−B)T + 2KkVk (A12)

Setting (A12) equal to zero to find the value of Kk that minimizes Jk,

KkVk = (I −KkB)Pk−1B
T

Kk

(

Vk +BPk−1B
T
)

= Pk−1B
T

Kk = Pk−1B
T
(

BPk−1B
T + Vk

)−1
(A13)

This implies that the optimal gain matrix Kk given by (A13) minimizes the sum of squared errors when Vk =
diag(Bxk).
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We note that if all the states x are used to generate the output y, such that each state xi is used to generate its
Poisson random measurement zi, then Vk = diag([c1x1k , c2x2k , · · · , cmxmk

]) where m = n. Since the true state xk

is unavailable to the estimator, we replace xk with x̂k−1. Therefore we have

Vk = diag([c1x̂1k−1
, c2x̂2k−1

, · · · , cmx̂mk−1
]) = diag(Bx̂k−1)

which results in a suboptimal filter.

Recursive weighted least square estimator algorithm

1 Initialization

x̂0 = E[x]

P0 = E
[

(x− x̂0)(x− x̂0)
T
]

2 Estimation

Kk = Pk−1B
T
(

BPk−1B
T + Vk

)−1
(A14)

x̂k = x̂k−1 +Kk (yk −Bx̂k−1) (A15)

Pk = (I −KkB)Pk−1(I −KkB)T +KkVkK
T
k (A16)

2. Kalman filter based on WLS with Poisson observations

Consider the linear stochastic discrete-time dynamic system with indirect measurements of the state given by

xk = Fk−1xk−1 +Gk−1uk−1 + wk−1, wk ∼ N (0, σ2) (A17)

yk = zk, zk ∼ Poisson(λk = Bxk) (A18)

The expected value of both sides of (A17) is given as

x̄k = E[xk] = Fk−1x̄k−1 +Gk−1uk−1 (A19)

Using

(xk − x̄k)(xk − x̄k)
T =Fk−1(xk−1 − x̄k−1)(xk−1 − x̄k−1)

TFT
k−1 + wk−1w

T
k−1

+ Fk−1(xk−1 − x̄k−1)w
T
k−1 + wk−1(xk−1 − x̄k−1)

TFT
k−1 (A20)

the covariance of xk is given as

P−

k =E
[

(xk − x̄k)(xk − x̄k)
T
]

=Fk−1P
+
k−1F

T
k−1 +Wk−1 (A21)

because E[(xk−1 − x̄k−1)w
T
k−1] = 0, since (xk−1 − x̄k−1) is uncorrelated with wk−1. Therefore from (A21), (A14),

(A15), and (A16), we replace x̂k−1 with x̂−

k , we replace Pk−1 with P−

k , we replace x̂k with x̂+
k , and we replace Pk

with P+
k . We then get the Poisson Kalman filter equations for each time step k = 1, 2, · · · :

x̂+
k = x̂−

k +Kk

(

yk − Bx̂−

k

)

(A22)

P−

k = Fk−1P
+
k−1F

T
k−1 +Wk−1 (A23)

Kk = P−

k BT
(

BP−

k BT + Vk

)−1
(A24)

x̂−

k = Fk−1x̂
+
k−1 +Gk−1uk−1 (A25)

P+
k = (I −KkB)P−

k (I −KkB)T +KkVkK
T
k (A26)
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