Por favor, use este identificador para citar o enlazar este ítem:
http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/2820
Real-time detection of COVID-19 epicenters within the United States using a network of smart thermometers | |
Samuel D Chamberlain. Inder Singh. Carlos A Ariza. Amy L Daitch. Patrick B Philips. Benjamin D Dalziel. | |
Acceso Abierto | |
Atribución-NoComercial-SinDerivadas | |
10.1101/2020.04.06.20039909 | |
Containing outbreaks of infectious disease requires rapid identification of transmission hotspots, as the COVID-19 pandemic demonstrates. Focusing limited public health resources on transmission hotspots can contain spread, thus reducing morbidity and mortality, but rapid data on community-level disease dynamics is often unavailable. Here, we demonstrate an approach to identify anomalously elevated levels of influenza-like illness (ILI) in real-time, at the scale of US counties. Leveraging data from a geospatial network of thermometers encompassing more than one million users across the US, we identify anomalies by generating accurate, county-specific forecasts of seasonal ILI from a point prior to a potential outbreak and comparing real-time data to these expectations. Anomalies are strongly correlated with COVID-19 case counts and may provide an early-warning system to locate outbreak epicenters. | |
www.medrxiv.org | |
2020 | |
Artículo | |
https://www.medrxiv.org/content/10.1101/2020.04.06.20039909v1.full.pdf | |
Inglés | |
VIRUS RESPIRATORIOS | |
Aparece en las colecciones: | Artículos científicos |
Cargar archivos:
Fichero | Tamaño | Formato | |
---|---|---|---|
1102766.pdf | 217.34 kB | Adobe PDF | Visualizar/Abrir |