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Abstract: Containing outbreaks of infectious disease requires rapid identification of 

transmission hotspots, as the COVID-19 pandemic demonstrates. Focusing limited public health 

resources on transmission hotspots can contain spread, thus reducing morbidity and mortality, 

but rapid data on community-level disease dynamics is often unavailable. Here, we demonstrate 

an approach to identify anomalously elevated levels of influenza-like illness (ILI) in real-time, at 

the scale of US counties. Leveraging data from a geospatial network of thermometers 

encompassing more than one million users across the US, we identify anomalies by generating 

accurate, county-specific forecasts of seasonal ILI from a point prior to a potential outbreak and 

comparing real-time data to these expectations. Anomalies are strongly correlated with COVID-

19 case counts and may provide an early-warning system to locate outbreak epicenters. 

 

One Sentence Summary: Distributed networks of smart thermometers track COVID-19 

transmission epicenters in real-time.  
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Main Text 

Epidemic dynamics of the coronavirus disease (COVID-19) have varied widely across the globe, 

since the outbreak emerged from Wuhan, China in December 2019 (1). Countries with proactive 

management and widespread testing have more effectively limited spread (i.e. ‘flattening the 

curve’), whereas countries with limited response, such as the United States, have experienced 

steeper growth rates in cases (2). Syndromic monitoring systems—collecting information about 

symptoms often prior to, or instead of, interaction with the formal healthcare system—have 

played a pivotal role in successfully mitigating COVID-19 spread in countries such as Taiwan 

and South Korea (3). Rapid syndromic detection also played a role in curtailing the 2014-2016 

Ebola Outbreak in West Africa (4), where speed of detection was important in reducing outbreak 

intensity (5). 

 

Networks of geolocated, user-generated physiological measurements hold the potential for 

improved tracking and prediction of outbreak epicenters (6, 7). Data from these networks are 

typically less specific, but more sensitive, than formal surveillance, and are often available more 

rapidly, because formal surveillance is constrained by testing speed (5) and/or time for record 

aggregation (8). Data from syndromic monitoring networks can be physiologically grounded in 

disease processes (e.g. fever), in contrast with internet-based proxies, such as search engine logs, 

that are often used as a substitute for real-time syndromic data (9). Physiological data from 

connected devices, such as thermometer data, or elevated heart-rate data (10), are thus a 

potentially valuable resource for outbreak response, and, at present, may be able to detect 

COVID-19 symptoms in the absence of widespread and rapid testing in the US. 
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Here, we outline a method to identify illness incidence anomalies using a geospatial network of 

smart thermometers, where county-scale anomalies are flagged in real-time. We then use the 

method to identify COVID-19 outbreaks in the continental United States. Our anomaly detection 

method follows three core steps: 1) Generate county-specific forecasts of influenza-like illness 

(ILI) from a time point prior to a potential outbreak, 2) compare real-time thermometer-derived 

ILI to forecast expectations when new data is aggregated daily, and 3) flag anomalous ILI values 

by evaluating the probability that the current signal is driven by regular seasonal influenza. In 

this case, we flag ILI values that exceed the 97.5% percentile of expected influenza trajectories. 

 

We track real-time ILI and create ILI forecasts using data collected from a network of 

smartphone-connected personal thermometers managed by Kinsa, Inc. We track ILI in the 

network by classifying users with elevated temperature readings over multiple days as having 

influenza-like illness (see Methods). This sensor network records the temperature and 

approximate geo-location when a user takes their temperature (e.g. during an illness episode). 

These recordings store temperature readings, via Kinsa’s smartphone app, and locations are 

logged via GPS location or IP address. Readings are aggregated to county-scale ILI and 

anonymized. The temperature readings are used to construct an ILI signal that is highly 

correlated to Center for Disease Control and Prevention (CDC) ILI nationally (r > 0.95) and 

across CDC regions (r range 0.70-0.94), and these signals have been demonstrated to improve 

regional ILI surveillance and forecasting (6, 7). We construct the ILI signal at the county-scale, 

allowing identification of anomalous ILI incidence at the scale of individual cities. More 

information on constructing illness incidence from the thermometer network can be found in the 

Supplemental Methods. 
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Our forecast builds upon the findings that individual cities have predictable, distinct epidemic 

intensity patterns governed by both population size and climate (11, 12). As population size and 

climate change relatively slowly from year-to-year, this allows the use of the county-specific, 

daily network data to learn the typical seasonal flu transmission patterns of a region. From this 

we construct local ILI forecasts that form the basis for real-time anomaly detection. Following 

(13), we estimate a county’s daily reproductive number (Rt), the average number of secondary 

cases that each infected individual would infect if the conditions remained as they were, at time t 

by solving the following equation: 

     ���1 � ��∑
�

������     Eq. 1 

where It is Kinsa-derived ILI incidence, and wk is the infectivity profile for influenza, 

representing the probability that an individual who becomes infected on day t acquired the 

infection from an individual who became infected on day t-k. We approximate wk by a gamma 

distribution with a mean of 2.5 and variance of 0.7 days (14). The summation term in equation 

(1) thus represents “effective incidence” assumed to be experienced by a susceptible individual 

on day t. For each county, we estimate the median Rt for each day-of-year by first calculating 

daily Rt for back to August 1, 2016. We then forecast ILI forward from March 1st, 2020, by using 

the median Rt corresponding to day t, to estimate It+1 and forward propagate these predictions 12-

weeks (84 days) ahead. We generate an ensemble of 100 influenza predictions by inserting 

Gaussian noise into the starting values of effective incidence at the point of prediction. The scale 

of noise varies across regions, determined from the residual ILI after detrending the past time 

series using a two-week centered, rolling mean. See Methods for more detail on the nation-wide 

and region-specific implementations of this approach. 
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We compare the real-time ILI to these influenza trajectories to identify localized anomalies, 

daily. We flag anomalous ILI when the daily, real-time data exceeds the 97.5% percentile of the 

expected influenza forecast ensemble. We define anomaly incidence as the difference between 

the real-time thermometer ILI and the 97.5% percentile drawn from the influenza forecast 

ensemble. To validate this method, we apply our approach to detect COVID-19 anomalies by 

forecasting expected influenza starting on March 1st, 2020, before widespread outbreaks were 

underway (2). We assess detection quality by comparing anomaly fever counts to state- and 

county-level COVID-19 confirmed cases aggregated from a variety of government sources (15). 

Anomaly fever counts are calculated from cumulative anomaly incidence multiplied by the 

estimated user base of a region. 

 

The skill of the ILI forecast in the anomaly detection system compares favorably with the 

Carnegie Mellon (CMU) Epicast and Stat models (16) at CDC region and national scales (Fig. 

1A).  To calculate these forecast error rates, we compare CMU forecasts to CDC ILI, while 

comparing anomaly detection forecasts to thermometer-based ILI, given that these models are 

trained on different data sources. In contrast to other ILI forecasts, our models do not need to be 

initialized with now-cast predictions, (i.e. inferred initial conditions) as thermometer-based ILI, 

upon which the model is trained, is available in real-time. Additionally, our forecast errors do not 

appear to increase much past the 5-week forecast horizon, suggesting the ILI forecasts in the 

anomaly detection system are stable at long-time horizons (Fig. 1A). Forecast error rates display 

seasonality, where forecasting errors are higher in winter months during periods of increased 

illness incidence, and lower in the spring and summer (Fig. S1).  
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Our detected anomalies correlate strongly to positive COVID-19 cases at both county (Fig. 1B) 

and state scales (Fig. 1C), validating this method for the rapid detection of COVID-related illness 

anomalies. Specifically, we find significant correlations between total confirmed COVID-19 

cases and total fever anomalies at the county (Fig. 1B: r = 0.54, P < 0.0001) and state scales 

(Fig. 1C: r = 0.55, P < 0.0001). We restrict this analysis to counties with at least one confirmed 

COVID-19 case, given that a lack of confirmed cases could be due to either true COVID-19 

patterns or an absence of testing and reporting. We do not observe anomalous fevers in three 

states where COVID-19 cases are confirmed; Minnesota, Wisconsin, and South Dakota. County-

level total anomalous fevers also correspond to the spatial distribution of major known outbreak 

centers, with hotspots in the Seattle Area, San Francisco Bay Area, New York Metro Area, and 

Florida (Fig. 1D). 

 

We provide an example for how this method is applied in real-time for Brooklyn, NY, USA (Fig. 

1E). Here, we forecast expected influenza trends from March 1st, 2020 before large-scale 

outbreaks were occurring in the New York Metro Area (2), and we observe a strong divergence 

from expected influenza trajectories (Fig. 1E). However, we also observe an inflection back 

toward declining ILI shortly after social distancing efforts were enacted (Fig. 1E), beginning 

with school closures on March 16th and a later ‘stay-at-home’ order on March 20th, 2020. We 

observe even sharper declines in ILI post-social distancing in Santa Clara, CA, where a ‘shelter-

in-place’ order was enacted on March 16th, 2020 (Fig. 1F).  
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Figure 1: Model comparisons (A) at CDC region and national scales between the expected influenza and 

Carnegie Mellon forecasts. Correlations between detected fever anomalies and total confirmed COVID-

19 cases at the (B) county- and (C) state- scale. These comparisons were made across 1321 counties with 

at least one confirmed case. (D) Map of anomalous fever estimates on March 24th, 2020, where 

anomalous fevers are estimated from cumulative anomaly incidence multiplied by the county user base. 

Anomaly incidence detections in (E) Brooklyn, NY, USA and (F) Santa Clara, CA, USA where school 

closures and shelter-in-place orders were implemented. Here, the blue line and shaded area are the median

expected influenza forecast and 2.5-97.5th percentile of the forecast ensemble, respectively. 
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Our estimates of anomaly incidence are likely impacted by social distancing in these cases, as 

distancing should also reduce influenza transmission. We are thus likely underestimating 

anomaly incidence after social distancing is enacted, given that our model assumes typical 

seasonal influenza transmission patterns. We therefore explore the sensitivity of our method by 

reducing Rt values used in the influenza forecast for all days after social distancing efforts were 

implemented. In Brooklyn NY (Fig. 2A), dropping future Rt values by 25% reduces the 

trajectory of seasonal influenza, leading to an increased magnitude of anomaly incidence (Fig. 

2A). In Santa Clara County, without accounting for social distancing we observe only a short 

period of detected anomalies, where real-time ILI falls below the expected range of seasonal 

influenza (Fig. 1F). Here, reducing Rt following the ‘shelter-in-place’ order leads to additional 

anomaly detections post-social distancing (Fig. 2B). Similarly, following school closures in 

Miami-Dade County, real-time ILI values fell below anomalous levels by late March (Fig. S2), 

though accounting for reduced influenza transmission leads to more anomaly detections (Fig. 

2C). In these case examples, we assumed R reduced by 25% given social distancing directives. 

While the true value cannot be estimated at present, it likely varies with both policy 

implementation and adherence. These findings suggest social distancing plays an important role 

in the quality of anomaly detection, and future research should address the impact of social 

distancing on influenza transmission rates. 
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Figure 2: Influence of social distancing-based reductions of influenza transmissivity (Rt) on anomaly 

detection in (A) Brooklyn, New York, (B) Santa Clara, California, and (C) Miami, Florida. Reductions of 

influenza Rt by 25% cause additional anomaly detections in Santa Clara and Miami and increase the 

magnitude anomaly incidence detections in Brooklyn. 
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Working in synergy with the formal healthcare system, high-throughput signals from distributed 

syndromic monitoring networks, such as we describe here, could play a decisive role in 

managing local outbreaks, and alter the trajectories of pandemics. These networks may be of 

particular use for situations where rapid testing and isolation are key to pandemic control (3, 4), 

such as the current COVID-19 outbreak, where the absence of widespread and rapid testing have 

led to a massive growth in cases worldwide. 
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