Por favor, use este identificador para citar o enlazar este ítem: http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/2264
Divergent modes of online collective attention to the COVID-19 pandemic are associated with future caseload variance
David Rushing Dewhurst.
Thayer Alshaabi.
Michael V. Arnold.
Joshua R. Minot.
Christopher M. Danforth.
Peter Sheridan Dodds.
Acceso Abierto
Atribución-NoComercial-SinDerivadas
https://arxiv.org/pdf/2004.03516v1.pdf
Using a random 10% sample of tweets authored from 2019-09-01 through 2020-03-25, we analyze the dynamic behavior of words (1-grams) used on Twitter to describe the ongoing COVID-19 pandemic. Across 24 languages, we find two distinct dynamic regimes: One characterizing the rise and subsequent collapse in collective attention to the initial Coronavirus outbreak in late January, and a second that represents March COVID-19-related discourse. Aggregating countries by dominant language use, we find that volatility in the first dynamic regime is associated with future volatility in new cases of COVID-19 roughly three weeks (average 22.7 $pm$ 2.17 days) later. Our results suggest that surveillance of change in usage of epidemiology-related words on social media may be useful in forecasting later change in disease case numbers, but we emphasize that our current findings are not causal or necessarily predictive
arxiv.org
2020
Artículo
https://arxiv.org/pdf/2004.03516v1.pdf
Inglés
VIRUS RESPIRATORIOS
Aparece en las colecciones: Artículos científicos

Cargar archivos:


Fichero Tamaño Formato  
1101370.pdf2.48 MBAdobe PDFVisualizar/Abrir