Por favor, use este identificador para citar o enlazar este ítem: http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/2177
The challenges of modeling and forecasting the spread of COVID-19
Andrea L. Bertozzi.
Elisa Franco.
George Mohler.
Martin B. Short.
Daniel Sledge.
Acceso Abierto
Atribución-NoComercial-SinDerivadas
https://arxiv.org/pdf/2004.04741v1.pdf
We present three data driven model-types for COVID-19 with a minimal number of parameters to provide insights into the spread of the disease that may be used for developing policy responses. The first is exponential growth, widely studied in analysis of early-time data. The second is a self-exciting branching process model which includes a delay in transmission and recovery. It allows for meaningful fit to early time stochastic data. The third is the well-known Susceptible-Infected-Resistant (SIR) model and its cousin, SEIR, with an "Exposed" component. All three models are related quantitatively, and the SIR model is used to illustrate the potential effects of short-term distancing measures in the United States.
arxiv.org
2020
Artículo
https://arxiv.org/pdf/2004.04741v1.pdf
Inglés
VIRUS RESPIRATORIOS
Aparece en las colecciones: Artículos científicos

Cargar archivos:


Fichero Tamaño Formato  
1101208.pdf783.92 kBAdobe PDFVisualizar/Abrir