Por favor, use este identificador para citar o enlazar este ítem:
http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/2177
The challenges of modeling and forecasting the spread of COVID-19 | |
Andrea L. Bertozzi. Elisa Franco. George Mohler. Martin B. Short. Daniel Sledge. | |
Acceso Abierto | |
Atribución-NoComercial-SinDerivadas | |
https://arxiv.org/pdf/2004.04741v1.pdf | |
We present three data driven model-types for COVID-19 with a minimal number of parameters to provide insights into the spread of the disease that may be used for developing policy responses. The first is exponential growth, widely studied in analysis of early-time data. The second is a self-exciting branching process model which includes a delay in transmission and recovery. It allows for meaningful fit to early time stochastic data. The third is the well-known Susceptible-Infected-Resistant (SIR) model and its cousin, SEIR, with an "Exposed" component. All three models are related quantitatively, and the SIR model is used to illustrate the potential effects of short-term distancing measures in the United States. | |
arxiv.org | |
2020 | |
Artículo | |
https://arxiv.org/pdf/2004.04741v1.pdf | |
Inglés | |
VIRUS RESPIRATORIOS | |
Aparece en las colecciones: | Artículos científicos |
Cargar archivos:
Fichero | Tamaño | Formato | |
---|---|---|---|
1101208.pdf | 783.92 kB | Adobe PDF | Visualizar/Abrir |