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Abstract

We present three data driven model-types for COVID-19 with a
minimal number of parameters to provide insights into the spread of
the disease that may be used for developing policy responses. The first
is exponential growth, widely studied in analysis of early-time data.
The second is a self-exciting branching process model which includes
a delay in transmission and recovery. It allows for meaningful fit to
early time stochastic data. The third is the well-known Susceptible-
Infected-Resistant (SIR) model and its cousin, SEIR, with an "Ex-
posed” component. All three models are related quantitatively, and
the SIR model is used to illustrate the potential effects of short-term
distancing measures in the United States.

The world is in the midst of an ongoing pandemic, caused by the emer-
gence of a novel coronavirus. Pharmaceutical interventions such as vacci-
nation and anti-viral drugs are not currently available. In the short run,
addressing the COVID-19 outbreak will depend critically on the success-
ful implementation of public health measures including social distancing,
workplace modifications, disease surveillance, contact tracing, isolation, and
quarantine.

On March 16th, Imperial College London released a report [9] predicting
dire consequences if the US and UK did not swiftly take action. In response,
in both the US and the UK, governments responded by implementing more
stringent social distancing regulations [I8]. We now have substantially more
data, as well as the benefit of analyses performed by scientists and researchers



across the world [15] 20, B0, 28, 17, 35 [14], [39]. Nonetheless, modeling and
forecasting the spread of COVID-19 remains a challenge.

Here, we present three basic models of disease transmission that can be
fit to data provided by the Imperial College report and to data coming out of
different cities and countries. While the Imperial college study employed an
agent-based method (one that simulates individuals getting sick and recov-
ering through contacts with other individuals in the population), we present
three macroscopic models: (a) exponential growth; (b) self-exciting branch-
ing process; and (c) the SIR compartment model. These models have been
chosen for their simplicity, minimal number of parameters, and for their abil-
ity to describe regional-scale aspects of the pandemic.

Because these models are parsimonious, they are particularly well-suited
to isolating key features of the pandemic and to developing policy-relevant
insights. We order them according to their usefulness at different stages of
the pandemic - exponential growth for the initial stage, self-exciting branch-
ing process when one is still analyzing individual count data going into the
development of the pandemic, and a macroscopic mean-field model going into
the peak of the disease.

From a public policy perspective, these models highlight the significance
of fully-implemented and sustained social distancing measures. Put in place
at an early stage, distancing measures that reduce the virus’s reproduction
number — the expected number of individuals that an infected person will
spread the disease to — may allow much-needed time for the development
of pharmaceutical interventions, or potentially stop the spread entirely. By
slowing the speed of transmission, such measures may also reduce the strain
on health care systems and allow for higher-quality treatment for those who
become infected. The models presented here demonstrate that relaxing these
measures in the absence of pharmaceutical interventions prior to the out-
break’s true end will allow the pandemic to reemerge. Where this takes
places, social distancing efforts that appear to have succeeded in the short
term will have little impact on the total number of infections expected over
the course of the pandemic.

This work is intended for a broad science-educated population, and in-
cludes explanations that will allow scientific researchers to assist with public
health measures. We also present examples of forecasts for viral transmis-
sion in the United States. The results of these models differ depending on
whether the data employed cover infected patient counts or mortality. In ad-
dition, many aspects of disease spread, such as incubation periods, fraction



of asymptomatic but contagious individuals, seasonal effects, and the time
between severe illness and death are not considered here.

1 Results

1.1 Exponential Growth

Epidemics naturally exhibit exponential behavior in the early stages of an
outbreak, when the number of infections is already substantial but recoveries
and deaths are still negligible. If at a given time ¢ there are I(t) infected
individuals, and « is the rate constant at which they infect others, then at
early times (neglecting recovered individuals), I(t) = Ipe®. The time it takes
to double the number of cumulative infections (doubling time) is a common
measure of how fast the contagion spreads: if we start from I infections, it
takes a time Ty = In2/a to achieve 21 infections.

For the COVID-19 outbreak, exponential growth is seen in available data
from multiple countries (see Figure [1]), with remarkably similar estimated
doubling times in the early stages of the epidemic. For COVID-19, we ex-
pect an exponential growth phase during the first 15-20 days of the outbreak,
in the absence of social distancing policies. This estimate is based on patient
data from the Wuhan outbreak, which indicate that the average time from
illness onset to death or discharge is between 17 and 21 days for hospitalized
patients [27, 42]. Because they are a fraction of infections, deaths initially
increase at a similar exponential pace, with some delay relative to the be-
ginning of the outbreak. These observed doubling time estimates are signifi-
cantly smaller than early estimates (~7 days) obtained using data collected
in Wuhan from field investigations [19].

1.2 Self-exciting point processes

A branching point process [22, 8, B3] can also model the rate of infections
over time. Point processes are easily fit to data and allow for parametric
or nonparametric estimation of the reproduction number and transmission
time scale. They also allow for estimation of the probability of extinction at
early stages of an epidemic. These models have been used for various social
interactions including spread of Ebola [13], retaliatory gang crimes [34], and
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Figure 1: (a) Exponential model applied to new infection and death data for Italy,
Germany, France, Spain, the UK, and the United States, normalized by the total
country population (source, WHO). Insets show the same data on a logarithmic
scale. Both the normalized infection ¢ and death d data were thresholded to
comparable initial conditions for each country; fits are to the first 15-20 days of the
epidemic after exceeding the threshold. The fitted doubling time is shown for both
infections (7};) and death (7, 4) data. Data from Japan and South Korea are show
for comparison and do not exhibit exponential growth. (b) Dynamic reproduction
number (mean and 95% confidence interval) of COVID-19 for China, Italy, and the
United States estimated from reported deaths [6] using a non-parametric branching
process [25]. Current estimates as of April 1, 2020 of the reproduction number in
New York, California, and Indiana (confirmed cases used instead of mortality for
Indiana). Reproduction numbers of Covid-19 vary in different studies and regions
of the world (in addition to over time), but have generally been found to be between
1.5 and 6 [21I] prior to social distancing.



email traffic [11, [43]. The intensity (rate) of infections can be modeled as

A(t) = p+ Y Rtw(t —t;) (1)

t;<t

where ¢ is the current time and t; are the times of previous infection inci-
dents. Here the dimensionless reproduction number, R(¢), evolves in time
[4, 37, 10, 26], 25] to reflect changes in disease reproduction in response to
public health initiatives (e.g. school closings, social distancing, closures of
non-essential businesses). The distribution of inter-event times w(t; — t;)
is typically modeled using a gamma or Weibull distribution [26] 5] [14]; we
choose Weibull with shape parameter k and scale parameter 0. Finally, the
parameter u allows for exogenous infection cases. Given , the quantity

pij = Rt w(ts — ;) /A(t:) (2)

gives the probability of secondary infection ¢ having been caused by primary
infection j. The point process in ({1)) can be viewed as an approximation to
the common SIR model of infectious diseases (described later) during the
initial phase of an epidemic when the total number of infections is small
compared to the overall population size [31].

Figure [1fb) shows the estimated dynamic reproduction number [41] 29]
of COVID-19 in China, Italy, and the U.S. from late January, 2020 to early
April, 2020. The branching point process is fit to mortality data [6] using
an expectation-maximization algorithm [25]. Public health measures under-
taken in China appear to have reduced R(t) to below the self-sustaining
level of R = 1 by the middle of February. In Italy, public health measures
brought the local value of R(t) down; as of early April, however, it remained
above R = 1. Currently, the estimated reproduction number in the U.S. as
a whole is around 2.5. The reproduction number, however, varies notably by
location.

The branching point process model can also be adapted to capture the
long-term evolution of the pandemic by incorporating a pre-factor that ac-
counts for the eventual decrease in the number of susceptible individuals
[31]:

N(8) = (1= No/N)(p+ Y R(t:)w(t — t:). (3)

t>t;
Here N, is the cumulative number of infections as of time ¢ and N is the
total population size. This version of the branching process model, referred
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state data model Ry v Iy a peak logLh AIC 4 o
CA  confirmed SIR 24 014 0.025 — 5/16/20 43230  -86454 g ~’__'f«~"‘ 1
CA  confirmed SEIR 49 010 0.05 0.28 5/16/20 43233  -86458 r“_,r-"'”‘
CA  confirmed Hawkes 1.6 (b k,u) = (2.73,4.0,1.60) 5/21/20 42722 -85432 ]
CA  mortality SIR 2.7 012 0.10 5/5/20 252 -497
CA  mortality SEIR 3.1 020 0.10 0.38 5/3/20 252 -495 E
CA  mortality Hawkes 1.5 (b,k,p) = (1.73,3.31,.04) 5/8/20 242 -472 3
02
IN confirmed SIR 4.4 0.06 0.005 - 5/13/20 9098 -18190 o
IN confirmed SEIR 4.7 0.16 0.005 0.20 5/9/20 9116 -18224 2
IN confirmed Hawkes 2.4 (b k,pu) = (3.18,4.0,0.17) 5/1/20 8947 -17883
IN  mortality SIR 3.7 0.09 0.005 4/26/20 19.95  -33.91 !
IN mortality SEIR 4.6 0.14 0.005 0.36 4/25/20 19.96  -31.92
IN mortality Hawkes 2.1 (b, k,p) = (3.26,2.45,.02) 5/1/20 10.68  -11.36
NY  confirmed SIR 21 019 010 ~— 4/27/20 569616 -1139225 0
NY  confirmed SEIR 34 019 0.10 0.36 4/25/20 569452 -1138896
NY  confirmed Hawkes 15 (b k)= (1.90,4.0,3.60) 4/28/20 571203 -1142395 Mar2L Mar 23 Mar 25 Mear2i Mar29
NY  mortality SIR 4.1 0.10 0.005 4/12/20 6313 -12620 — hawkes -- seir =~ sir
NY mortality SEIR 50 0.20 0.005 0.32 4/12/20 6313 -12618 COMTCA ~ contNY ~ moartIN
NY  mortality Hawkes 2.5 (bk,p) = (3.25,3.97,.04) 4/18/20 6272 -12533 ~ confIN < mortCA — mortNY

Table 1: (Left) Fit of data from California, Indiana, and New York States to
three different models, SIR, SEIR, and HawkesN, using Poisson regression. The
log-likelihood and the Akaike Information Criteria [I] are shown. The blue lettering
corresponds to the lowest AIC value. The Hawkes process parameters include a
Weibull shape k and scale b for w(t), along with the exogenous rate p. Left shows
parameters from the fit and the projected date for the peak in new cases for each
of these datasets. For each state, we run the fit on both confirmed case data and
mortality data, taken from [6]. (Right) Shown are the actual data points compared
to the fitted curves.

to as HawkesN, represents a stochastic version of the SIR model (described
below); with large R, the results of HawkesN are essentially deterministic.
When projecting, we use our estimated R(¢;) at the last known point for all
times going forward. Since the N; term is the number of infections, if our
estimates for R(¢;) are based on mortality numbers, we must also choose a
mortality rate to interpolate between the two counts; though estimated rates
at this time seem to vary significantly, we choose 1% as a plausible baseline
[36]. Alternatively, we also create forecasts for three US states based on fits
to reported case data (see Table [I)).



1.3 Compartmental Models

The SIR model [38,16] describes a classic compartmental model with Susceptible-
Infected-Resistant population groups. A related model, SEIR, including an
Exposed compartment, was shown to fit historical death record data from
the 1918 Influenza epidemic [3], during which governments implemented ex-
tensive social distancing measures, including bans on public events, school
closures, and quarantine and isolation measures. The SIR model can be fit to
the predictions made in [9] for agent based simulations of the United States.
The SIR model assumes a population of size N where S is the total number
of susceptible individuals, I is the number of infected individuals, and R is
resistant. For simplicity of modeling, we view deaths as a subset of resistant
individuals and deaths can be estimated from the dynamics of R; this is rea-
sonable for a disease with a relatively small death rate. We also assume a
short enough timescale during which resistance does not degrade sufficiently.
We do not yet have sufficient data to know what that time is although it
is reasonable to consider resistance to last among the general population for
several months.
The SIR model equations are

ds 1S dI

dR
a - N w T

1S

— —~l — =~ 4
b~ =L - =1 (4)
Ro = B/~ . Here (8 is the transmission rate constant, v is the recovery rate
constant, and Rg is the reproduction number. One integrates forward
in time from an initial value of S, I, and R at time zero. The SEIR model
includes an Exposed category E:

ds IS dFE IS
- _ _ Q3T = — B E _4E
T A T
dl dR

Here a is the inverse of the average incubation time. Both models are fit,
using maximum likelihood estimation with a Poisson likelihood, to data for
three US States (CA, NY, and IN) [6]. The results are shown in Table
with a comparison to HawkesN. We use the Akaike information criteria [I]
to measure model performance for each dataset; it is biased against models
with more parameters. The SEIR model performs better on the Confirmed
data for California and New York State, possibly due to the larger amount
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of data, compared to mortality for which SIR is the best for all three states.
HawkesN performs best for confirmed cases in NY.

Dimensionless models are commonly used in physics to understand the
role of parameters in the dynamics of the solution (a famous example being
the Reynolds number in fluid dynamics). The compartmental models
have a dimensionless form. There are two timescales dictated by £ and ~,
so if time is rescaled by v, 7 = ~t, and s = S/N, i = [/N, and r =
R/N represent fractions of the population in each compartment, then we
retain only one dimensionless parameter Ry that, in conjunction with the
initial conditions, completely determines the resulting behavior. There are
three timescales in SEIR, thus resulting in a dimensionless equation with
two dimensionless parameters. For SIR, given an initial population with
r(0) = 0 and any sufficiently small fraction of initial infected e = i(0), the
shapes of the solution curves s(7),i(7),(7) do not depend on €, other than
exhibiting a time shift that depends logarithmically on e (Fig, . This
is a universal similarity solution for the SIR model in the limit of small €
(Fig. 3), depending only on Ry. Critically, the height of the peak in i(t) and
the total number of resistant/susceptible people by the end of the epidemic
are determined by R, alone. But, the sensitivity of the time translation
to the parameter €, and the dependence of true time values of the peak on
parameter v makes SIR challenging to fit to data at the early stages of an
epidemic when Poisson statistics and missing information are prevalent. All
of this is important information for public health officials, policymakers, and
for political leaders to understand, in terms of the importance of decreasing
R, for potentially substantial periods of time, explaining why projections
of the outbreak can display large variability, and highlighting the need for
extensive disease testing within the population to help track the epidemic
curve accurately.

After the surge in infections the model asymptotes to end states in which
r approaches the end value r,, and s approaches 1 —r., and the infected pop-
ulation approaches zero. The value r., satisfies a well-known transcendental
equation [23| 24, 12]. A phase diagram for the similarity solutions is shown
on Fig. 2| (right). The dynamics start in the bottom right corner where s
is almost 1 and follow the colored line to terminate on the i = 0 axis at the
value s... A rigorous derivation of the limiting state under the assumptions
here can be found in [12, 23] 24].
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Figure 2: Solution of dimensionless SIR model (5) with Ry = 2. The first panel
show the graphs of s (blue), i (orange) and r (grey) on the vertical axis vs. 7 on
the horizontal axis, for different e. The corresponding values of € from left to right
are 107,107, 107® , 10719, Middle panel shows the time until peak infections vs
log(e) for the values shown in the left panel. This asymptotic tail to the left makes
it challenging to fit data to SIR in the early stages. Top right is a phase diagram
for fraction of infected vs. fraction of susceptible with the direction of increasing
7 indicated by arrows, for three different values of Rg. The bottom panel displays
a typical set of SIR solution curves over the course of an epidemic, with important
quantities labeled.
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Figure 3: ITmpact of short-term social distancing: fraction of population vs. date.
(Top) California SIR model based on mortality data with parameters from Table
(Ro = 2.7, v = 12, Iy = .1). Ry is cut in half from March 27 (one week
from the start of the California shut down) to May 5 to represent a short term
distancing strategy. (Bottom) New York SIR model with parameters from the
Table |1] (Rg = 4.1, v = .1, Iy = 05). We compare the case with no distancing, on
the left, to the case with distancing from March 30 (one week from the start of
the New York shut down) to May 5. The distancing measures suppress the curve
but are insufficient to fully flatten it.
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Discussion

The analysis presented here illustrates several key points, which can be un-
derstood using these parsimonious models. (a) The reproduction number R
is highly variable both in time and by location, and this is compounded by
distancing measures. These variations can be calculated using a stochastic
model and lower R is crucial for flattening the curve. (b) Mortality data
and confirmed case data have statistics that vary by location and by time
depending on testing and on accurate accounting of deaths due to the dis-
ease, and can lead to different projected outcomes. (c¢) While early control
provides time for health providers, it has little effect on the long term out-
comes of total infected unless it is sustained. New social protocols may be
needed both for the workforce and for society as a whole if we are to avoid
both high total levels of infection and a longer term shut down.

Reducing the reproduction number is critical to reducing strain on health
care systems, saving lives, and to creating the space for researchers to de-
velop effective pharmaceutical interventions, including a vaccine and anti-
viral therapies. While social and economic strains, along with political con-
siderations, may cause policymakers to consider scaling social distancing
measures back once shown to be effective, it is critical that leaders at all
levels of government remain aware of the dangers of doing so. During the
1918 influenza pandemic, the early relaxation of social distancing measures
led to a swift uptick in deaths in some US cities [3]. The models presented
here help to explain why this effect might occur, as illustrated in Fig. [3]

The models presented here are certainly simplifications, making a variety
of assumptions in order to increase understanding and to avoid over-fitting
the limited data available; more complex models have been introduced and
are currently in use [9, 2]. We note, though, that even between these rather
simple models, the parameters obtained from our fits (Table [1)) can vary sig-
nificantly for a given location and, though we have in each case determined
which of these fits appears to have most validity, in many cases these are
not strong indicators. This variability illustrates the tremendous challenge
of making accurate predictions of the course of the epidemic while still in
its early stages and while operating under very limited data. At the same
time, this uncertainly may lend weight to the idea of erring on the side of
caution, and continuing current social measures to curtail the pandemic. Im-
plementing such measures over a long period of time may prove prohibitively
difficult, requiring the development of alternative approaches or policies that
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will allow more activities to proceed while continuing to reduce the spread
of the virus.

Materials and Methods

Relation between the exponential model and compartment models

The exponential model is appropriate during the first stages of the outbreak,
when recoveries and deaths are negligible: in this case, the SIR compartment
model can be directly reduced to an exponential model. If we assume S ~ N
in equations (4)), then dI(t)/dt ~ (8 — ~)I, with the exponential solution
I(t) = Ipe™ with & = 8 — v and I the initial number of infections. We
expect at very early times (¢t < 1/7) that the recovery will lag infections
so one might see o ~ 3 at very early times and then reduce to a ~ 3 —
once t > 1/v. Reports and graphs disseminated by the media typically
report cumulative infections, which include recoveries and deaths. Using
the SIR model, cumulative infections are I.(t) = I(t) + R(t) and evolve as
dl.(t)/dt = Bsl. Integrating this, we see that I. likewise grows exponentially
with the same rate « = f—+. An important observation is that the doubling
time for cumulative infections (T; = In(2)/«) will change during the early
times, with a shorter doubling time while (¢ < 1/7) and a longer doubling
time when t > 1/~.

Relation between the HawkesN and SIR model

Here we make the connection between the HawkesN process in Equation
and the SIR model in Equation 4} Following [31, 40], first a stochastic SIR
model can be defined where a counting process C; = N — .S, tracks the total
number of infections up to time ¢, N is the population size, and S; is the
number of susceptible individuals. The process satisfies

P(dCy = 1) = BS,L,dt/N + o(dt)

P(dR, = 1) = vI,dt + o(dt) ,

which then gives the rate of new infections and new recoveries as [31]

M(t) = BS I, /N, NE(t) = ~1,.
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It is shown in [40] that the continuum limit of the counting process ap-
proaches the solution to the SIR model in Equation [4l Furthermore, if the
kernel w(t) in the HawkesN model defined by is chosen to be exponen-
tial with parameter + and the reproduction number is chosen to be constant
(Ro), then E[N(t)] = M (t) where p = 0, 8 = Roy (see [31] for further
details).

Self-similar behavior of SIR

Calling the rescaled time 7 = tv, can be written as

d di d
8 Ryis, T = Ryis —i, &

dr dr dr =

(5,3, 7)o = (1 — €,6,0), (5)

where 0 < € << 1 is the initial fraction of the infected population at the
start time.

Fitting the SIR, SEIR, and Hawkes models

The parameters in Table [I] were found using maximum Poisson likelihood
regression [3] via grid search with ranges I, € [.005,.1], Ry € [1.5,5], v €
.01,.2], and p € [.01,.4]. Models were fit to empirical new infections per
day or new mortality counts per day (assuming that 1% of those labeled
as Resistant in the simulations were the mortalities). Fitted intensities are
shown for each of the models in Table [I. We note that for the results pre-
sented here the likelihood is somewhat flat at the maximum, with multiple
parameter combinations yielding plausible fits. Fitting SIR type models is
known to be challenging due to parameter identifiability issues [7, 32]. The
HawkesN process was fit using a non-parametric expectation maximization
algorithm, the details of which can be found in [25]. The inter-infection time
distribution is modeled using a Weibull distribution with shape k£ and scale
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