Por favor, use este identificador para citar o enlazar este ítem: http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/1951
Cardiac or Infectious? Transfer Learning with Chest X-Rays for ER Patient Classification
Jonathan Stubblefield.
Mitchell Hervert.
Jason Causey.
Jake Qualls.
Wei Dong.
Lingrui Cai.
Jennifer Fowler.
Emily Bellis.
Karl Walker.
Jason H. Moore.
Sara Nehring.
Xiuzhen Huang.
Acceso Abierto
Atribución-NoComercial-SinDerivadas
10.1101/2020.04.11.20062091
One of the challenges with urgent evaluation of patients with acute respiratory distress syndrome (ARDS) in the emergency room (ER) is distinguishing between cardiac vs infectious etiologies for their pulmonary findings. We evaluated ER patient classification for cardiac and infection causes with clinical data and chest X-ray image data. We show that a deep-learning model trained with an external image data set can be used to extract image features and improve the classification accuracy of a data set that does not contain enough image data to train a deep-learning model. We also conducted clinical feature importance analysis and identified the most important clinical features for ER patient classification. This model can be upgraded to include a SARS-CoV-2 specific classification with COVID-19 patients data. The current model is publicly available with an interface at the web link: http://nbttranslationalresearch.org/.
www.medrxiv.org
2020
Artículo
https://www.medrxiv.org/content/10.1101/2020.04.11.20062091v1.full.pdf
Inglés
VIRUS RESPIRATORIOS
Aparece en las colecciones: Artículos científicos

Cargar archivos:


Fichero Tamaño Formato  
1100651.pdf1.05 MBAdobe PDFVisualizar/Abrir