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Abstract 
One of the challenges with urgent evaluation of patients with acute respiratory distress syndrome 
(ARDS) in the emergency room (ER) is distinguishing between cardiac vs infectious etiologies 
for their pulmonary findings. We evaluated ER patient classification for cardiac and infection 
causes with clinical data and chest X-ray image data.  We show that a deep-learning model 
trained with an external image data set can be used to extract image features and improve the 
classification accuracy of a data set that does not contain enough image data to train a deep-
learning model.  We also conducted clinical feature importance analysis and identified the most 
important clinical features for ER patient classification. This model can be upgraded to include a 
SARS-CoV-2 specific classification with COVID-19 patients data. The current model is publicly 
available with an interface at the web link: http://nbttranslationalresearch.org/. 
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Data statement.  
The clinical data and chest x-ray image data for this study were collected and prepared by the 
residents and researchers of the Joint Translational Research Lab of Arkansas State University 
(A-State) and St. Bernards Medical Center (SBMC) Internal Medicine Residency Program. As 
data collection is on-going for the project stage-II of clinical testing, raw data is not currently 
available for data sharing to the public. 
 
Ethics.  
This study was approved by the St. Bernards Medical Center’s Institutional Review Board (IRB).
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1. Background 
In this study, we focused on acute respiratory distress syndrome (ARDS) in an emergency room 
(ER) setting. There are many etiologies of acute dyspnea, but our model focused on 
distinguishing between two major categories:  cardiac and infectious.  Upon admission to a 
hospital emergency department, attending physicians must quickly determine which category the 
patient falls into.  Typically these patients receive a suite of common clinical panels as well as a 
chest X-ray image early in the diagnostic process.  We have developed a machine learning model 
capable of assisting ER physicians with categorizing the acute dyspnea given clinical values 
alone, or in conjunction with an X-ray image if one is available. 
 
Cardiac causes include etiologies of dyspnea secondary to a misfunction in the heart, including 
acute coronary syndrome, acute heart failure, arrythmias, and valvular disease [1].  These 
diseases do not benefit from antibiotic therapy.  Infectious causes of acute dyspnea include both 
pneumonia, an infectious process primary to the lungs, and sepsis, a systemic response to an 
infection anywhere in the body that can impair function in a variety of organs [1].  When severity 
is life-threatening, suspicion of these disease processes require empiric antibiotics.  Other causes 
of acute dyspnea may fall into neither of these categories [1], or a patient may have acute 
dyspnea with both cardiac and infectious contributions.  See Figure 1 for examples of X-ray 
images for patients with neither label, “infection” label, and “cardiac” label, respectively. 
 
Antibiotics are not benign medications.  Though they are safe and efficacious when used 
judiciously, incautious use of antibiotic causes many problems for the patient and society as 
whole.  Antibiotics have adverse effects in 1 out 5 patients [9].  Though these adverse effects 
often include direct side-effects from the drugs themselves, antibiotics can also produce adverse 
effects through their interactions with microorganisms [9].  Misuse of antibiotics can promote the 
growth of antibiotic resistant populations or cause an overgrowth of an opportunistic pathogen, 
such as Clostridium dificile [9].  However, in an ER setting, empiric antibiotics may need to be 
started without confirmation of infectious process that would benefit from antibiotic therapy [9].  
In these instances, the risk of harm from not initiating antibiotics promptly is greater than the risk 
posed by the antibiotics themselves.  This is largely due to the difficulty in excluding infectious 
processes from the diagnosis.  Excluding serious infectious etiology of disease usually requires 
taking samples from the patient and waiting several days to see if bacteria grow from the sample.  
Our model represents a step toward more rapidly confirming or excluding infectious etiology, 
and thus reducing the unnecessary empiric prescription of antibiotics.  
 
Recent advances in machine learning have shown that it can be a valuable tool for aiding in 
medical planning.  The CheXNet [14] model was able to accurately identify 14 categories of 
abnormalities in chest X-ray images.  Deep learning techniques have shown promise for 
automated detection and diagnosis of lung cancer [19-22], breast cancer [23,24], skin cancer [25-
27], and other diseases.  Most of these approaches use deep neural networks [28] especially 
convolutional neural networks [29,30].   Gradient boosted trees, and the XGBoost [3] model in 
particular, have been used to solve a wide variety of problems where the inputs may include very 
diverse variables of differing types [31-34].  Our model makes use of both deep neural networks 
and XGBoost for examining images and clinical data, respectively, and the combination of the 
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two is handled by extracting image features via a deep neural network and performing 
classification using XGBoost. 
 

 
Figure 1: Examples of chest X-ray images for (a): neither infection nor cardiac label, (b): infection label, (c) cardiac 
label. 

 

2. Methods 

2.1 Clinical Data Preprocessing 
 
The dataset contains clinical data of 188 patients and chest X-ray images of 171 patients.  Each 
patient has two boolean classification labels: cardiac and infection, of which both can be true. 
We used the clinical and image data of the 171 patients who had both for evaluation.  The 
clinical data were hand-entered by a group of residents on rotation and contained some data entry 
errors that required careful cleaning before it could be used. 
 
The complete blood count (CBC) with differential column always contained 3 or 4 values.  
Based on what CBC with diff reports, conventional notation, and their ranges, these values were 
white blood cell count, hemoglobin, hematocrit, and platelets, respectfully.  When three values 
were present, hematocrit was always assumed to be missing based again on ranges and 
conventions.  Of note, hematocrit should be able to be calculated from hemoglobin and is 
somewhat of a “redundant” value.  After cleaning, hematocrit was excluded from the final 
analysis due to a preponderance of missing values. 
 
The basic metabolic profile (BMP) test reports sodium, potassium, chloride, bicarbonate, blood 
urea nitrogen, and glucose.  By convention, they are reported in this order.  The original dataset 
included some missing values in the BMP report.  We identified which values were missing 
based on the positions and ranges of the values present compared to typical ranges for 
corresponding components of the BMP. 
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The column for brain natriuretic peptide (B-NP) always contained a single value.  Where a real 
number was present, the value was kept as is.  Otherwise, it was given an appropriate sentinel 
value to represent “missing”. 
 
The first troponin measurement was represented as a continuous (real number) value, but 
sometimes contained values that could be directly interpreted as a real number.  Values such as 
“<0.012” were given the sentinel value “0” for “undetectable.”  Multiple values were sometimes 
given, documenting the trend of multiple troponin measurements.  In these cases, only the first 
measurement was kept. 
 
The procalcitonin measurements contained too many missing values to be used in the final 
analysis, so it was excluded. 
 
The lactic acid value was measured as a continuous (real number) value.  All instances 
containing a value that could be directly interpreted as a real number were kept.  All other values 
were marked as “missing”. 
 
The vital signs column usually contained 6 values in the following format:  Temperature; Pulse 
Rate; Systolic Blood Pressure/Diastolic Blood Pressure; Respiration Rate; Pulse Oximetry.  Real 
number values were recorded without lettering or comments.  Though pulse oximetry is typically 
recorded as a percentage, we converted it to a real number in the range [0,1].  The residents 
recording these measurements were not consistent with the ordering of these values.  The 
overwhelming common alternative format transposed the blood pressure and pulse rate values.  
Missing values were identified using typical ranges of these values, the order of the values, and 
the fact that blood pressure values are always expressed as x/y with x>y.  Information about the 
patient’s use of supplemental oxygen was not kept. 
 
The arterial blood gas column was the most problematic.  There were usually 4 or 5 values: 
Arterial pH, arterial pressure of CO2 (PCO2), arterial bicarbonate (bicarb), arterial pressure of 
O2 (PO2), and pulse oxygenation (SpO2) at time of blood draw.  The residents recording these 
measurements were least consistent following the conventional order for this column.  The 
conventional order of pH PCO2, bicarb, PO2, SpO2 was assumed unless the values were outside 
the typical range.  However, interpretation was limited as the typical and possible ranges of 
PCO2 and PO2 overlap significantly.  Though recommended for proper interpretation, 
information on SpO2 and patient supplemental oxygen utilization were not included. 

2.2 CheXNet-Based Image Features 
Training a deep convolutional neural network model requires a large number of images.  In this 
dataset we have 171 images, which is too few to attempt training a complex and robust model 
from scratch.  Instead, we opted to use a pre-trained neural network model from a similar 
application area as a feature extractor.  CheXNet [14] is a 121-layer convolutional neural 
network trained on the NIH ChestX-ray14 [17] dataset, consisting of 100,000 frontal X-ray 
images with 14 disease labels.  We used the open source PyTorch implementation of CheXNet 
[18]. 
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We utilize the 14 output scores produced by the output stage of the pre-trained CheXNet model 
as 14 image features, and performed testing to determine whether adding these image features to 
the clinical features could improve classification accuracy.  The CheXNet output scores are real 
number values in the range [0,1] and were originally interpreted as the probability that the input 
chest X-ray image should be labeled with the corresponding medical condition.  We interpret the 
values as a 14-dimensional feature vector which is concatenated to our clinical features.  The 
rationale is that this feature vector contains a high-level encoding of the medically relevant 
abnormalities observed in the X-ray image. 
 

2.4 Model Training and Evaluation 
We used XGBoost [3], an open-source implementation of gradient boosted decision trees.  The 
model was trained and evaluated on the dataset using 5-fold cross-validation. 

2.5 SHAP Analysis of Feature Importance 
SHAP (SHapley Additive exPlanations) is a game theoretic approach to machine learning model 
explanation [10]. We used the Python implementation [11].  
 
The Shapley analysis computes the Shapley value to each individual feature of a training sample.  
The Shapley value represents a feature’s responsibility for a change in the model’s output.  We 
therefore use the sum of the magnitudes of the SHAP values across training examples to measure 
the importance of a feature. 
 

3. Results 

3.1 Separate Clinical, Image Models vs Clinical + Image Model 

3.1.1 Infection 
 
Table 1: Five-fold cross validation results for "infection" label, showing clinical-only, image-only, and combined 
performance. Each fold is shown, with average performance in the last row. Top performance in each row is shown in 
bold. 

fold  clinical   image  both 
1 0.542 0.625 0.621
2 0.629 0.525 0.632
3 0.731 0.787 0.850
4 0.688 0.628 0.628
5 0.600 0.623 0.642

  avg  0.638 0.638 0.675
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Figure 2: Box plot of 5-fold cross validation results.  The box extends from the lower to upper quartile values of the 
data, with a line at the median and a triangle at the mean. 

Table 1 shows the performance on the “infection” labeling task for each fold of the 5-fold cross 
validation, as well as the average for all five folds, for three variations of the models.  The 
“clinical” column corresponds to a model using clinical features only, which achieved an average 
accuracy of 63.8%.  The “image” column corresponds to a model using image (CheXNet) 
features only, with an average accuracy of 63.8%.  The “both” column corresponds to a model 
combining the clinical and image features, and had an average accuracy of 67.5%, which was a 
slight (3.7%) improvement over either of the single-modality models alone. Figure 2 shows a 
boxplot representing the range of accuracy values over the five folds. 

3.1.2 Cardiac 
Table 2: Five-fold cross validation results for "cardiac" label, showing clinical-only, image-only, and combined 
performance. Each fold is shown, with average performance in the last row. Top performance in each row is shown in 
bold. 

fold   clinical   image    both  
1 0.720 0.747 0.793
2 0.677 0.535 0.719
3 0.618 0.628 0.715
4 0.743 0.528 0.795
5 0.754 0.547 0.705

  avg  0.703 0.597 0.746
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Figure 3: 5-fold cross validation scores. The box extends from the lower to upper quartile values of the data, with a 
line at the median and a triangle at the mean. 

 
Table 2 shows the performance on the “cardiac” labeling task for each fold of the 5-fold cross 
validation, as well as the average for all five folds, for three variations of the models.  The 
“clinical” column corresponds to a model using clinical features only, which achieved an average 
accuracy of 70.3%.  The “image” column corresponds to a model using image (CheXNet) 
features only, with an average accuracy of 59.7%.  The “both” column corresponds to a model 
combining the clinical and image features, and had an average accuracy of 74.6%, which was a 
4.3% improvement over either of the single-modality models alone. Figure 3 shows a boxplot 
representing the range of accuracy values over the five folds. 
 

3.2 Feature Importance Analysis 
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3.2.1 Infection 
Figure 4 shows the SHAP feature importance analysis for clinical features on the “infection” 
labeling task, and Figure 5 shows the same analysis for image features listed by categorical label 
as defined by CheXNet [14].  Each point in the figure is a feature value of a particular training 
example.  All 171 examples are used for the Shapley analysis.  The color of the point represent 
the feature value and the X axis of the point is its SHAP value.  The features are ranked by the 
sum of SHAP value magnitudes over all samples. 
 
SHAP analysis of feature importance for prediction of infection was consistent with current 
medical knowledge.  White blood cells count is expected to rise in response to infection [4] and 
was found to be the most important feature for determining the presence of infection.  Similarly, 
fever (elevation of temperature) was found to be predictive of infection. 
 
SHAP analysis of imaging features for prediction of infection is also consistent with clinical 
knowledge.  Consolidation and infiltration can both be radiographic features of a pneumonia [2]. 
 

 
Figure 4: SHAP Feature importance plot for clinical features on the "infection" labeling task. 
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Figure 5: SHAP Feature importance plot for image features on the "infection" labeling task. 

 
 

3.2.2 Cardiac 
 
SHAP analysis of feature importance for prediction of a cardiac cause of respiratory distress also 
followed a reasonable pattern (see Figures 6 and 7).  Brain natriuretic peptide (B-NP) was rated 
by the model as its most important feature for predicting a cardiac cause of infection.  Normal 
values for B-NP have been shown to have a high negative-predictive value for heart failure [5] 
and are used to diagnose exacerbation of existing heart failure [13].  Blood glucose levels are not 
directly associated with heart failure, but the model may be looking for associated diabetes 
mellitus.  This common disease is an important risk factor for heart disease [6].  Increases in 
respiratory rate can be caused by heart failure exacerbations [13], so it makes sense that this 
would be an important predictive feature. 
 
The model’s evaluation of imaging features for cardiac causes are less intuitive.  The model 
highly values cardiomegaly, effusion, and edema as predictive of a cardiac cause.  All these 
radiographic findings can be present in heart failure [5, 8].  However, the model’s use of the 
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pneumothorax and pleural thickening features as predictive of heart failure, do not make clinical 
sense.  The model may be using these features to evaluate for the presence of Kerley B lines.  
These lines are commonly associated with heart failure and are adjacent to the pleura [15].   
 

 
Figure 6:  SHAP Feature importance plot for clinical features on the "cardiac" labeling task. 
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Figure 7: SHAP Feature importance plot for image features on the "cardiac" labeling task. 

 

3.2.3 Feature Comparison 
 
Table 3: Top 5 clinical features by labeling task. 

Rank Infection Cardiac 
1 White_Blood_Cells Brain_Natriuretic_Peptide 
2 Lactic_Acid Lactic_Acid 
3 Temperature Glucose 
4 Pulse_Rate Respiration_Rate 
5 Hemoglobin White_Blood_Cells 

 
Table 3 shows the top five clinical features for each labeling task.  The top features were 
determined by summarizing all absolute values of SHAP values by features and then ranking 
features based on the sum. 
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Table 4: Top 5 clinical panels comparison.  The number of features in each panel is shown in parentheses. 

Rank Infection Cardiac 
1 Vitals (6) B-NP (1) 
2 CBC (3) BMP (7) 
3 BMP (7) Vitals (6) 
4 ABG (4) Lactic Acid (1) 
5 Lactic Acid (1) CBC (3) 

 
Table 4 shows the top five clinical panels for each labeling task.  The top panels were determined 
by further summarizing and ranking the per-feature SHAP value magnitudes.  A panel with more 
components is potentially favored in ranking as more values are added together.  The single-
component feature B-NP ranks 1st in the Cardiac experiment suggests that it is a very strong 
indicator. 
 
 
Table 5: Top 5 image features comparison. 

Rank Infection Cardiac 
1 Consolidation Cardiomegaly 
2 Effusion Pneumothorax 
3 Infiltration Edema 
4 Cardiomegaly Pleural_Thickening
5 Edema Effusion 

 
Table 5 shows the top five imaging features, labeled by their corresponding CheXNet label [14] 
for each labeling task.  The top features were determined by SHAP analysis as previously 
described.   
 
 
Feature Importance. As seen in Table 3, the model ranks lactic acid measurements as its 
second most important feature for both infectious and cardiac causes of respiratory distress.  
Lactic acidosis is usually caused by global hypoperfusion which could be secondary to cardiac 
(cardiogenic shock) or infectious (sepsis) causes [7].  This suggests that, in our dataset, patients 
with cardiac causes of acute respiratory distress are more likely to also present with lactic 
acidosis than those with infectious causes, or that they are likely to develop lactic acidosis 
sooner.  This makes clinical sense as an infection in the lungs need not have systemic effects to 
cause respiratory distress whereas heart failure is expected to have systemic effects.   
 
The model seems to view the classifications of infection and cardiac causes of acute respiratory 
distress as somewhat dichotomous.  For instance, high values of lactic acid are associated with 
cardiac causes and low values are associated with infectious causes, and this value is ranked as 
the second most important for both classifications.  Similarly, white blood cell count is the most 
important laboratory value for infection and the fifth most important for cardiac, with high 
values associated with infection and low values associated with cardiac. 
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As seen in Table 5, we observe imaging features shared between the infection and cardiac 
classifications, with edema, cardiomegaly, and effusion in the top 5 features for both categories.  
Even though effusion can sometimes be associated with complicated pneumonia [8], the model 
treats all of these features as favoring cardiac causes while disfavoring infectious causes, 
reinforcing the model’s overall dichotomous view of these disease processes. 
 
 

Summary and Discussion 
Current Performance of the Model: 
 
We show that a combination of imaging and clinical features improved overall performance of 
XGBoost on predicting both infectious and cardiac causes of acute respiratory distress.  For the 
infection labeling task, the combined model performed best in 3 of the 5 cross validation folds, 
and performed slightly better on average.  In this task, the performance was only marginally 
better than clinical features alone, perhaps due to the higher variance in visual presentation of 
infectious conditions.  In the cardiac labeling task, the combined model performed best in 4 out 
of 5 folds.  Interestingly, in this task the imaging model alone significantly underperformed the 
clinical model, but the image features provided a larger overall improvement when added to the 
clinical features than we saw on the infection labeling task.  The combination seems to improve 
the consistency of XGBoost on prediction of cardiac causes. 
 
Future Performance Expectations: 
 
The main limitation on this model’s current performance is the relatively small number of 
example cases.  The dataset of 171 patients is far below an ideal number for training.  However, 
we are continuing to expand our dataset.  As our dataset grows, we expect significant 
performance improvements.  We are also exploring new image model formulations that make 
use of “localization” annotations we were able to collect on our dataset.  These annotations 
should allow us to provide addition feedback to the image model to serve as a forcing function 
for an attention mechanism.  With an updated model and by expanding our dataset to hundreds 
of cases, we expect accuracy to make significant improvements in performance.   
 
Future Task Expansion: 
 
This project was started before the recent SARS-CoV-2 pandemic.  As we move forward with 
development, we will explore upgrading the model to include a SARS-CoV-2 specific 
classification with COVID-19 patients data.  This would allow physicians to use the same 
software to diagnose cases of SARS-CoV-2 pneumonia.  We expect our model to be able to 
perform this task with a high accuracy as other research teams have had success with this 
problem [16].  This would also support our goal of improving antibiotic stewardship among 
physicians as SARS-CoV-2 pneumonia does not benefit from antibiotic therapy [11]. 
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Future Research: 
 
In our next phase of research, we will allow our collaborating resident physicians to apply the 
model to new patients and help guide decision making.  This will allow us to evaluate the 
model’s efficacy in improving patient outcomes and reducing antibiotic use. 
 
Web Access to Model: 
 
We have published the current version of this model on the Internet for evaluation purposes.  
Physicians will be able to enter the data and receive a prediction through a web interface for 
research purposes.  Eventually, our goal is to aid emergency room clinicians in planning 
treatment strategies, although clinical evaluation and approval is required before it can be used as 
a diagnostic and planning tool. It is available at: http://nbttranslationalresearch.org/. 
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