Por favor, use este identificador para citar o enlazar este ítem: http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/1939
BETS: The dangers of selection bias in early analyses of the coronavirus disease (COVID-19) pandemic
Qingyuan Zhao.
Nianqiao Ju.
Sergio Bacallado.
Acceso Abierto
Atribución-NoComercial-SinDerivadas
https://arxiv.org/pdf/2004.07743v1.pdf
The coronavirus disease 2019 (COVID-19) has quickly grown from a regional outbreak in Wuhan, China to a global pandemic. Early estimates of the epidemic growth and incubation period of COVID-19 may have been severely biased due to sample selection. Using detailed case reports from 14 locations in and outside mainland China, we obtained 378 Wuhan-exported cases who left Wuhan before an abrupt travel quarantine. We developed a generative model we call BETS for four key epidemiological events---Beginning of exposure, End of exposure, time of Transmission, and time of Symptom onset (BETS)---and derived explicit formulas to correct for the sample selection. We gave a detailed illustration of why some early and highly influential analyses of the COVID-19 pandemic were severely biased. All our analyses, regardless of which subsample and model were being used, point to an epidemic doubling time of 2 to 2.5 days during the early outbreak in Wuhan. A Bayesian nonparametric analysis further suggests that 5% of the symptomatic cases may not develop symptoms within 14 days since infection.
arxiv.org
2020
Artículo
https://arxiv.org/pdf/2004.07743v1.pdf
Inglés
VIRUS RESPIRATORIOS
Aparece en las colecciones: Artículos científicos

Cargar archivos:


Fichero Tamaño Formato  
1100612.pdf970.04 kBAdobe PDFVisualizar/Abrir