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Abstract

The coronavirus disease 2019 (COVID-19) has quickly grown from a regional outbreak in
Wuhan, China to a global pandemic. Early estimates of the epidemic growth and incubation
period of COVID-19 may have been severely biased due to sample selection. Using detailed case
reports from 14 locations in and outside mainland China, we obtained 378 Wuhan-exported
cases who left Wuhan before an abrupt travel quarantine. We developed a generative model we
call BETS for four key epidemiological events—Beginning of exposure, End of exposure, time of
Transmission, and time of Symptom onset (BETS)—and derived explicit formulas to correct for
the sample selection. We gave a detailed illustration of why some early and highly influential
analyses of the COVID-19 pandemic were severely biased. All our analyses, regardless of which
subsample and model were being used, point to an epidemic doubling time of 2 to 2.5 days
during the early outbreak in Wuhan. A Bayesian nonparametric analysis further suggests that
5% of the symptomatic cases may not develop symptoms within 14 days since infection.

1 Introduction

On December 31, 2019, the Health Commission in Wuhan, China, announced 27 cases of unknown
viral pneumonia and alerted the World Health Organization. The causative pathogen was quickly
identified as a novel coronavirus and the disease was later designated as the coronavirus disease 2019
(COVID-19) [4]. The regional outbreak in Wuhan quickly turned into a global pandemic. As of
April 15, 2020, COVID-19 has reached almost every country in the world, infected at least 2 million
people, and killed at least 130,000 [2].

Researchers around the world quickly responded to the COVID-19 outbreak. In particular, many
have examined early outbreak data to estimate the initial epidemic growth, using COVID-19 cases
confirmed in Wuhan or elsewhere. Two early studies published in premier medical journals by the
end of January estimated that the epidemic doubling time in Wuhan was about 6 to 7 days [13, 20],
but other studies appearing around the same time found that the doubling time was drastically
shorter, about 2 to 3 days [16, 18, 21]. How the pandemic subsequently developed around the
world seems to suggest that the latter estimates were much closer to truth. By simply plotting the
cumulative cases and deaths over time, it is evident now that the number of cases (and deaths) grew
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(a) Cumulative cases.
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(b) Cumulative deaths.

Figure 1: Growth of the COVID-19 pandemic around the world (data retrieved from https:
//www.worldometers.info/ on April 15, 2020).

more than 100 times 20 days after the first 100 cases (and 10 deaths) in countries most heavily hit
by the pandemic such as Italy, Spain, and the United States (Figure 1). That growth rate almost
exactly corresponds to a doubling time of 3 days. Nevertheless, to our knowledge there is no formal
explanation for this drastic difference, and it might have caused confusion during the early phase of
containment of COVID-19. For example, during the UK government’s daily briefing on March 16, it
was acknowledged that “without drastic action, cases could double every five or six days” [3]. Less
than two weeks later, that number was revised to “three to four days” [1].

For infectious diseases, another key epidemiological parameter is the incubation period. Several
studies have attempted to estimate the incubation period distribution of COVID-19 using cases
exported from Wuhan [5, 11, 14] and the results have been instrumental in shaping guidelines to
manage confirmed COVID-19 patients. For example, the interim clinical guidance for managing
COVID-19 patients published by the Centers for Disease Control and Prevention (CDC) [9] quoted
the results of Linton et al. [14] that “97.5% of persons with COVID-19 who develop symptoms will do
so within 11.5 days of SARS-CoV-2 infection.” However, as we will demonstrate below in Section 4,
the design and statistical inference of these studies are highly susceptible to selection bias.

In general, there are several potential biases in early analyses of the COVID-19 pandemic:

(i) Under-ascertainment: Because COVID-19 is a new disease, the testing capacity was very
limited during the early stage of outbreak. This may explain why Li et al. [13] under-estimated
the epidemic growth as they only used cases in Wuhan who showed symptoms before January 5,
2020. Under-ascertainment also leads to under-estimation of the incubation period, as patients
with longer incubation periods may be more likely to be under-ascertained during the early
stages of an outbreak.

(ii) Travel quarantine: Wuhan is a major transportation hub in central China, but all outbound
travels were abruptly halted on January 23, 2020 due to the rapid growth of the epidemic.
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For studies using cases exported from Wuhan, ignoring the sample selection due to the travel
quarantine leads to biased estimates of the epidemiological parameters.

(iii) Non-random sample selection: Because of the size and rapid growth of the COVID-19
pandemic, for most cases it is impossible to ascertain exactly when they were infected. If one
simply uses the cases with known incubation period (for example, if they were known to have
contact with other confirmed cases), that may create bias due to non-random sample selection.
In particular, it might be less likely for cases with longer incubation period to be included in
this sample, so the incubation period can be under-estimated. The abrupt travel quarantine
of Wuhan created an unbiased sample, as one can observe a window of exposure for every
Wuhan-exported case. However, it is still crucial to take into account under-ascertainment
bias and another bias due to the epidemic growth, as explained in detail in Section 4.

In this article, we address these challenges by carefully constructing a study sample and a
statistical model. We collected key epidemiological information about 1,460 confirmed COVID-19
cases across 14 locations in and outside mainland China. The health agencies in these locations have
published detailed case reports since the first confirmed local case, so we do not suffer from the
non-random sample selection bias described above. Section 2 describes the data collection and how
we discerned the Wuhan-exported cases.

We address the sample selection due to the January 23 travel quarantine by constructing a
generative statistical model. We call it the BETS model, because it models four key epidemiological
events: Beginning of exposure, End of exposure, time of Transmission, and time of Symptom onset.
The travel quarantine puts a constraint on the support of the observed data for Wuhan-exported cases,
for which we carefully work out the selection probability and use it to adjust the likelihood function.
We derive two likelihood functions, one conditional on the beginning and end of exposure and one
unconditional, that can both be used to estimate the epidemic growth and the incubation period.
Explicit formulae for the likelihood functions are derived under certain parametric assumptions.
Detailed construction and results of the parametric model can be found in Section 3.

We then give a detailed explanation in Section 4 of why some early analyses of the COVID-19
outbreak were severely biased, including the estimation of epidemic growth by Wu et al. [20] and
the estimation of incubation period by Backer et al. [5], Lauer et al. [11], Linton et al. [14]. Because
these analyses did not start from a generative model, they could not correctly adjust for sample
selection in the statistical inference.

In order to obtain closed-form likelihood functions in Section 3, we introduced some parametric
assumptions which necessarily restrict the shape of the tail of the incubation period distribution. To
avoid biased tail estimates, we model the distribution nonparametrically and also relax the other
assumptions in Section 5. Because the likelihood function is no longer available in closed form,
a Markov Chain Monte Carlo (MCMC) sampler is needed for Bayesian nonparametric inference.
Finally, we summarize our findings and discuss potential limitations of our study in Section 6. All
technical derivations can be found in the appendix; our dataset and statistical programs are publicly
available as an R package from https://github.com/qingyuanzhao/2019-nCov-Data.

2 Data

2.1 Data Collection

We found 14 locations where the local health agencies have published continuous reports for every
confirmed COVID-19 case since the first local case. Out of the 14 locations, 8 are cities/provinces in
mainland China: Hefei, Guilin, Jinan, Shaanxi, Shenzhen, Yangzhou, Xinyang, Zhanjiang and 6 are
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Figure 2: Geographical locations of the confirmed cases in our dataset.

countries/regions in East Asia: Hong Kong, Japan, South Korea, Macau, Singapore, and Taiwan
(Figure 2). These locations have varied levels of economic development and patterns of traveling
to/from Wuhan. Key information (close contact, travel history, symptom onset) of the confirmed
COVID-19 cases was collected based on press releases of the official health agencies (Table 1). In
total, there are 1,460 COVID-19 cases in the collected dataset.

For the mainland Chinese locations, the dataset included all the cases confirmed as of February 29,
2020. In Chinese cities outside the Hubei province, local epidemics were considered to be successfully
contained by the end of February. For the international locations, the dataset included all the cases
confirmed before February 15, more than three weeks after the outbound travel quarantine of Wuhan
on January 23. It is thus safe to say that our dataset contains almost all Wuhan-exported cases
confirmed in these locations.

2.2 Discerning Wuhan-exported cases

In total, 614 cases in our dataset had exposure to Wuhan before January 23, 2020. Because Wuhan
is was the first center of epidemic outbreak and traveling from/to Wuhan was not restricted before
January 23, it is reasonable to assume that the majority of these 614 cases were also infected there.
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Column name Description Example1 Summary statistics

Case Unique identifier for each case HongKong-05 1460 in total

Residence Nationality or residence of the case Wuhan 21.5% reside in Wuhan

Gender Gender Male /Female 52.1%/47.7% (0.2% unknown)

Age Age 63 Mean=45.6, IQR=[34, 57]

Known Contact Have known epidemiological contact2? Yes /No 84.7%/15.3%

Cluster Relationship with other cases Husband of 32.1% known

HongKong-04

Outside Transmitted outside Wuhan?3 Yes/ Likely /No 58.5%/7.7%/33.8%

Begin Wuhan Begin of stay in Wuhan (B) 30-Nov4

End Wuhan End of stay in Wuhan (E) 22-Jan

Exposure Period of exposure 1-Dec to 22-Jan 58.9% known period/date

8.2% known date

Arrived Final arrival date at the location 22-Jan 40.6% did not travel outside

where confirmed a COVID-19 case

Symptom Date of symptom onset (S) 23-Jan 9.0% unknown

Initial Date of first medical visit/quarantine 23-Jan 6.5% unknown

Confirmed Date confirmed as a COVID-19 case 24-Jan

Table 1: A summary of the key columns in the collected dataset.
1Description of this case in Hong Kong government’s press release on January 24, 2020: “The other two cases
are a married couple of residents of in Wuhan, a 62-year-old female [HongKong-04] and a 63-year-old male
[HongKong-05], with good prior health conditions. Based on information provided by the patients, They
took a high-speed train departing from Wuhan at 2:20pm, January 22, and arrived at the West Kowloon
station around 8pm. The female patient had a fever since yesterday with no respiratory symptoms. The male
patient started to cough yesterday and had a fever today. They went to the emergency department at the
Prince of Wales Hospital yesterday and were admitted to the hospital for treatment in isolation. Currently
their health conditions are stable. Respiratory samples of the two patients were tested positive for the novel
coronavirus.” (translated from Chinese).
2A case is considered to have known epidemiological contact if he/she had contact with people from the
Hubei province or had contact with another case confirmed earlier.
3See the main text for the criterion we used to classify the cases.
4The beginning of stay is treated as November 30 if the case resides in Wuhan and has no known beginning
of stay.
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Figure 3: Epidemic curves in different locations stratified by whether the cases were transmitted
outside Wuhan. “China - Other” includes four Chinese cities: Guilin, Jinan, Yangzhou, Zhanjiang;
“International” includes six Asian countries/regions: Hong Kong, Japan, Korea, Macau, Singapore,
Taiwan. The dashed vertical lines correspond to the abrupt travel quarantine of Wuhan from January
23, 2020.

However, some uncertainty arises if a case had contact with other confirmed cases outside their stay
in Wuhan, in one of the following scenarios:

• The case already had contact with other confirmed cases before their stay in Wuhan (4 cases);

• The case had contact with other confirmed cases only after they left Wuhan but before they
arrived at their destination, for example in trains or flights (4 cases);

• The case had close contact with other confirmed cases (usually family members from Wuhan)
after they reached their travel destination (131 cases).

We assumed in the first two scenarios the cases were transmitted outside Wuhan. For the third
scenario, it is likely that the cases were transmitted outside Wuhan, but at least one of the cases in
each cluster were transmitted in Wuhan. (Two cases are considered to belong two the same cluster
if they are in the family or had other recorded contact.) We used a column called Outside in our
dataset to record our best judgment on whether the cases were transmitted outside Wuhan using
the following rules:
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(i) Outside = “Yes”: Cases with no recorded stay in Wuhan between December 1, 2019 and
January 23, 2020, and the 8 cases in the first two scenarios above (854 cases).

(ii) Outside = “Likely”: Wuhan-exposed cases who did not show symptoms during the recorded
stay in Wuhan and had recorded contact with another confirmed COVID-19 case with an
earlier symptom onset (112 cases).

(iii) Outside = “No”: Wuhan-exposed cases with no recorded contact with other confirmed cases,
or who had the earliest symptom onset in their cluster or showed symptoms during their stay
in Wuhan (494 cases).

Figure 3 shows the local epidemic curves stratified by the Outside column in different locations.
The dataset we collected has relatively few missing values in the key entries needed for epidemic

modeling. Among the Outside = “No” cases, only 6.5% do not have the exact date they left Wuhan
and only 8.1% have missing symptom onset date (including those showing no symptoms at the time
of confirmation).

3 Statistical model and parametric inference

3.1 BETS: A generative model

We will first outline a generative model for (and named after) four key epidemiological events:
the beginning of stay in Wuhan B, the end of stay in Wuhan E, the usually unobserved time of
transmission T , and the time of symptom onset S (BETS). These four variables are well defined
regardless of whether the person has been to Wuhan, contracted the pathogenic coronavirus, or
showed symptoms of COVID-19.

Study population: Exposed to Wuhan

Consider the population of all people who stayed in Wuhan any time between 12AM December 1,
2019 (time 0) and 12AM January 24, 2020 (time L when outbound travel from Wuhan was banned,
L = 54) in local time. We introduce the following conventions to define the population with exposure
to Wuhan:

• B = 0: The person started their stay in Wuhan before December 2019;

• E = ∞: The person did not arrive in the 14 locations we are considering before the travel
quarantine (time L);

• T = ∞: The person did not contract the pathogenic virus during their stay in Wuhan (for
the purpose of this study, we need not differentiate between people who contracted the virus
outside their Wuhan stay and people who never contracted the virus);

• S =∞: The person did not show symptoms of COVID-19, either because they never contracted
the virus or they were asymptomatic.

Because we are only considering people exposed to Wuhan, we have B ≤ L. Two other natural
constraints are B ≤ E and T ≤ S (where we allow ∞ ≤∞). Therefore, the support of (B,E, T, S)
for the Wuhan-exposed population is

P =
{

(b, e, t, s) | b ∈ [0, L], e ∈ [b, L] ∪ {∞}, t ∈ [b, e] ∪ {∞}, s ∈ [t,∞]
}
. (1)
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B E T S

Figure 4: Directed acyclic graph (DAG) for the BETS model. B is the beginning of exposure, E is
the end of exposure, T is the time of transmission, and S is the time of symptom onset.

Full data BETS model

The joint density of (B,E, T, S) can always be factorized as:

f(b, e, t, s) = fB(b) · fE(e | b) · fT (t | b, e) · fS(s | b, e, t). (2)

Throughout this article we will maintain two general assumptions about two conditional densities
in this factorization:

Assumption 1. The conditional density fT (t | b, e) does not depend on b and e in the range
b ≤ t ≤ e, so it can be written as

fT (t | b, e) =

{
g(t), if b < t < e,

1−
∫ e
b g(x) dx, if t =∞.

(3)

Here g(t) ≥ 0 models the epidemic growth in Wuhan before the citywide quarantine on January
23; it can be interpreted as the instantaneous probability of being infected in Wuhan at time t and
satisfies the constraint

∫ L
0 g(x) dx ≤ 1.

Assumption 2. The conditional density fS(s | b, e, t) does not depend on b and e, so it can be
written as

fS(s | b, e, t) =

{
ν · h(s− t), if s <∞,
1− ν, if s =∞.

(4)

Here h(s− t) is the conditional density of the incubation period S − T given that S − T <∞ (the
case is not asymptomatic), so h(·) satisfies

∫∞
0 h(x) dx = 1.

Assumptions 1 and 2 essentially mean that the disease transmission and progression are indepen-
dent of traveling, which allows us to extend conclusions learned from the Wuhan-exported sample
to the whole population. Assumption 2 may be written S ⊥⊥ (B,E) | T , which can be represented
as a directed acyclic graphical (DAG) model (Figure 4) on the distribution of (B,E, T, S) [12].
Assumption 1 further restricts the dependence of T on (B,E). Under these two assumptions, the
BETS model is then parameterized by two kinds of parameters: parameters for the traveling pattern
fB(·) and fE(· | ·), and parameters for the disease transmission and progression g(·) and h(·).

Like any other assumptions in epidemic models, Assumptions 1 and 2 represent approximations
to the underlying dynamics. Assumptions 1 and 2 can be violated if, for example, short-term
visitors were exposed to more infectious cases or if people were less likely to travel if they felt sick.
Nevertheless, we think they are reasonable approximations to the reality during the initial outbreak,
when little was known about the new infectious disease.
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Parametric assumptions

Assumptions 1 and 2 are general assumptions on the dependence of T and S on B and E. We
consider two parametric assumptions that simplify the interpretation of our results:

Assumption 3. The probability of contracting the virus in Wuhan was increasing exponentially
before the quarantine:

g(t) = gκ,r(t)
∆
= κ · exp(rt), t ≤ L, (5)

where (κ, r) satisfies
∫ L

0 gκ,r(t) dt ≤ 1.

Assumption 4. The incubation period T − S, given that it is finite (the case is not asymptomatic),
follows a Gamma distribution with shape α > 0 and rate β > 0:

h(s− t) = hα,β(s− t) ∆
=

βα

Γ(α)
(s− t)α−1 exp{−β(s− t)}. (6)

Assumption 3 says that the epidemic size in Wuhan was growing exponentially before the
quarantine, which is a common assumption for early epidemic outbreaks. We think it is quite
reasonable given that little was known about the novel coronavirus before January 23. Assumption 4
restricts the density function h(·) to the Gamma family, which is commonly used to model the
distribution of the incubation period. These two assumptions will be used later in this and the next
sections to calculate closed-form likelihood functions. Later in Section 5, we will relax the parametric
assumptions to allow more flexible patterns for the epidemic growth and more general distributions
of the incubation period.

3.2 Accounting for sample selection in the likelihood

Study sample: Wuhan-exported cases

To use Wuhan-exported cases to study the epidemic growth and incubation period, it is crucial
to consider the effect of sample selection on Wuhan-exported cases. Using the notation above,
the Wuhan-exported cases confirmed in the 14 locations we consider can be written as an event
(B,E, T, S) ∈ D where

D = {(b, e, t, s) ∈ P | b ≤ t ≤ e ≤ L, t ≤ s <∞}. (7)

Compared to the full population P of people with exposure to Wuhan in (1), this set makes three
further restrictions:

(i) B ≤ T ≤ E, because we only use cases who contracted the virus during their stay in Wuhan;

(ii) E ≤ L, because the case can only be observed in the dataset if he/she left Wuhan before the
travel quarantine;

(iii) S < ∞, because not all locations report asymptomatic cases, which motivates us to only
consider COVID-19 cases who have shown symptoms.
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Selection-adjusted likelihood functions

In an ideal world where we could take independent observations from the exposed population P,
the likelihood function would be given by a product of the density f(Bi, Ei, Ti, Si) in (2) over i in
the sample. However, that is not the case for the initial COVID-19 outbreak in Wuhan. Because
of limited testing capacity in the beginning of the outbreak, many COVID-19 patients were not
identified.

Instead, we have obtained a high-quality dataset of Wuhan-exported cases which can be considered
as “shadows” of the outbreak in Wuhan. In order to use this dataset, it is crucial that the statistical
inference takes into account the sample selection (because we do not have independent observations
from P). In other words, statistical inference should be based on the conditional density:

f(b, e, t, s | D)
∆
= f

(
b, e, t, s | (B,E, T, S) ∈ D

)
=
f(b, e, t, s) · 1{(b,e,t,s)∈D}
P
(
(B,E, T, S) ∈ D

) , (8)

where 1{·} is the indicator function. Once this conditional density is obtained, we can then use the
product

n∏
i=1

f
(
Bi, Ei, Ti, Si | D

)
, (9)

as the likelihood function for frequentist or Bayesian inference, under the assumption that we have
observed an independent and identically distributed sample (Bi, Ei, Ti, Si), i = 1, . . . , n from the
conditional density.

However, in our dataset the time of transmission T is usually not observed. We can either treat
T as a latent variable and maximize the likelihood over both the modeling parameters and the
unobserved Ti, or simply marginalize over T in the full data likelihood and use the following observed
data likelihood,

Luncond(θ) =
n∏
i=1

∫
(Bi,Ei,t,Si)∈D

f
(
Bi, Ei, t, Si | D

)
dt, (10)

where θ = (fB(·), fE(·|·), g(·), h(·)) contains all the parameters of interest.
We can also condition on (B,E) to formulate a conditional likelihood function that does not

depend on the marginal distribution of (B,E):

Lcond(θ) =
n∏
i=1

∫
(Bi,Ei,t,Si)∈D

fT,S
(
t, Si | Bi, Ei,D

)
dt, (11)

where θ = (g(·), h(·)) and

fT,S(t, s | b, e,D)
∆
= fT,S(t, s | b, e, (B,E, T, S) ∈ D) =

fT,S(t, s | b, e) · 1{(b,e,t,s)∈D
P((B,E, T, S) ∈ D | B = b, E = e)

. (12)

The information about the epidemic growth g(·) and the incubation period h(·) contained in the
density fB,E(B,E | D) is not used in this likelihood, but the benefit is that the conditional likelihood
does not require us to specify the traveling pattern fB(·) and fE(· | ·).

Computing the selection probability

Next we derive the likelihood functions (10) and (11) under additional parametric modeling assump-
tions on the traveling pattern fB(·) and fE(· | ·). The first technical problem here is to compute the
denominators in (8) and (12). This is straightforward for the conditional likelihood:
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Lemma 1. Under Assumptions 1 and 2, for (b, e, t, s) ∈ D,

P((B,E, T, S) ∈ D | B = b, E = e) = ν[G(e)−G(b)], and fT,S(t, s | b, e,D) =
g(t)h(s− t)
G(e)−G(b)

. (13)

where G(t) =
∫ t
−∞ g(x) dx. If we additionally assume g(t) is growing exponentially (Assumption 3),

we have

fT,S(t, s | b, e,D) =


r exp(rt)

exp(re)− exp(rb)
h(s− t), for r 6= 0,

exp(rt)

e− b
h(s− t), for r = 0.

(14)

An important observation is that (14) does not depend on ν (proportion of symptomatic cases)
and κ (absolute scale of the epidemic).

For the denominator in the unconditional likelihood we need to integrate P((B,E, T, S) ∈ D |
B = b, E = e) over the marginal distribution of B and E. We cannot further simplify the integral
without making assumptions on fB(b) and fE(e | b). For this purpose we make the following two
assumptions which heuristically say that the travel pattern is stable during the study period:

Assumption 5. The beginning of stay in Wuhan B, conditioning on 0 ≤ B ≤ L, follows a uniform
distribution from 0 to L. More specifically,

fB(b) =

{
1− π, for b = 0,

π/L, for 0 < b ≤ L,
(15)

where 0 ≤ π ≤ 1 is the proportion of visitors (non-residents of Wuhan) in the Wuhan-exposed
population.

Assumption 6. The end of stay E follows an uniform distribution from B to L given E ≤ L, with
rate depending on whether the person resides in Wuhan:

fE(e | b = 0) =

{
λW , if 0 ≤ e ≤ L,
1− LλW , if e =∞,

, fE(e | b, b > 0) =

{
λV , if b ≤ e ≤ L,
1− (L− b)λV , if e =∞,

(16)

where the parameters λW , λV ≤ 1/L.

For b > 0, this assumption implies that P(E = ∞|b, b > 0) = bλV + (1 − LλV ) increases as b
increases. This is consistent with our intuition that the later someone arrives in Wuhan, the more
likely the person stays there after the travel quarantine on January 23.

By using the parametric forms (5), (15), (16) when integrating P((B,E, T, S) ∈ D | B = b, E = e)
and using the approximation (1 + rL)/ exp(rL) ≈ 0 for rL > 5, after some algebra we obtain

Lemma 2. Under Assumptions 1 to 3, 5 and 6, for r > 5/L, the selection probability is given by

P((B,E, T, S) ∈ D) ≈ κ exp(rL)ν

r2

[
(1− π)λW + πλV

(
1− 2

rL

)]
,

and for (b, e, t, s) ∈ D, the conditional density is given by

f(b, e, t, s | D) ≈ r2 ·
[1{b=0} + (ρ/L)1{b>0}] · exp(rt)[

1 + ρ(1− 2/(rL))
]
· exp(rL)

· h(s− t), (17)

where ρ = (λV /λW ) · π/(1− π).
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Similar to (14), the conditional density (17) does not depend on ν and κ. Moreover, it only
depends on the traveling parameters π, λV and λW through a single transformed parameter ρ. The
approximation (1 + rL)/ exp(rL) ≈ 0 we used to obtain the analytical formulae in Lemma 2 is quite
reasonable for rL > 5 (if the doubling time is 4 days, rL = log(2)/4× 54 = 9.34).

Observed data likelihood

As explained after equation (9), we cannot immediately use the conditional density (14) or (17) for
statistical inference because we do not observe the time of transmission T . The final step in the
derivation of our likelihood function is to marginalize over t in the density functions. The parametric
form of h(·) in Assumption 4 allows us to derive closed-form formulae.

Proposition 1. Under Assumptions 1 to 4, the observed data conditional likelihood (11) is given by

Lcond(r, α, β) =


rn
( β

β + r

)nα
·
n∏
i=1

exp(rSi)
[
Hα,β+r(Si −Bi)−Hα,β+r((Si − Ei)+)

]
exp(rEi)− exp(rBi)

, for r > 0,

n∏
i=1

Hα,β(Si −Bi)−Hα,β((Si − Ei)+)

Ei −Bi
, for r = 0,

(18)
where Hα,β(·) is the cumulative distribution function of the Gamma distribution with shape α and
rate β and (x)+ = max(x, 0) is the positive part of x. Under Assumptions 1 to 6, the observed data
unconditional likelihood (10) for r > 5/L is approximately given by

Luncond(ρ, r, α, β) ≈ r2n
( β

β + r

)nα
·
n∏
i=1

{
1{Bi=0} + (ρ/L)1{Bi>0}

1 + ρ(1− 2/(rL))
exp

{
r(Si − L)

}
×
[
Hα,β+r(Si −Bi)−Hα,β+r((Si − Ei)+)

]}
.

(19)

It is worthwhile to point out that if r = 0 (the epidemic was stationary), our conditional
likelihood function Lcond(r, α, β) reduces to the likelihood function for interval-censored exposure
in Reich et al. [17]. However, COVID-19 was growing quickly during its early outbreak in Wuhan,
so the growth exponent r is very different from 0. It is thus inappropriate to use the likelihood
Lcond(0, α, β) to estimate the incubation period of COVID-19, as done in some previous analyses
also using Wuhan-exported cases [5, 11, 14]. See Section 4.2 for further discussion and an illustration
of the bias due to ignoring the epidemic growth.

3.3 Results of the parametric inference

Implementation

To fit the statistical model, we used the 378 cases in our dataset that satisfy our sample selection
criterion in Section 3.2 and do not have missing symptom onset. We fitted separate models for
different locations and compare the results across the locations.

As the model in Section 3 is a regular parametric model, we performed the usual frequentist
inference using the likelihood function (19). In particular, point estimators of the parameters
(ρ, r, α, β) were obtained by maximizing the likelihood function (19), and confidence intervals for the
parameters were obtained by inverting the likelihood ratio χ2-test. As we are more interested in
quantiles of the incubation period instead of the shape and rate parameters, we parametrized the
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Location
Sample

ρ
Doubling time Incubation period

size (in days) Median 95% quantile

Conditional likelihood
China - Hefei 34 Not estimated 2.1 (1.2–3.7) 4.3 (2.9–6.0) 12.0 (9.1–17.3)
China - Shaanxi 53 Not estimated 1.7 (1.0–2.8) 4.5 (3.1–6.2) 14.6 (11.5–19.8)
China - Shenzhen 129 Not estimated 2.2 (1.7–3.0) 3.5 (2.8–4.3) 11.2 (9.5–13.6)
China - Xinyang 74 Not estimated 2.3 (1.5–3.5) 6.8 (5.4–8.2) 16.4 (13.8–20.1)
China - Other 42 Not estimated 2.0 (1.1–3.4) 5.1 (3.6–6.7) 12.3 (9.8–16.4)
International 46 Not estimated 2.1 (1.4–3.4) 3.8 (2.5–5.3) 10.9 (8.4–15.1)
All locations 378 Not estimated 2.1 (1.8–2.5) 4.5 (4.0–5.0) 13.4 (12.2–14.8)
All except Xinyang 304 Not estimated 2.1 (1.7–2.5) 4.0 (3.5–4.6) 12.2 (11.0–13.7)

Unconditional likelihood
China - Hefei 34 0.40 (0.18–0.82) 1.8 (1.4–2.4) 4.1 (2.8– 5.5) 11.9 (9.0–17.2)
China - Shaanxi 53 0.24 (0.11–0.46) 2.5 (2.0–3.1) 5.3 (3.9– 6.8) 15.0 (12.0–20.0)
China - Shenzhen 129 0.75 (0.52–1.06) 2.4 (2.1–2.8) 3.6 (2.9– 4.3) 11.3 (9.6–13.7)
China - Xinyang 74 0.45 (0.27–0.74) 2.4 (2.0–2.9) 6.8 (5.6– 8.1) 16.4 (13.9–20.2)
China - Other 42 0.45 (0.22–0.86) 2.1 (1.7–2.8) 5.3 (4.0– 6.6) 12.4 (10.0–16.4)
International 46 0.14 (0.05–0.32) 2.0 (1.6–2.6) 3.7 (2.5– 5.0) 10.8 (8.4–15.1)
All locations 378 0.45 (0.36–0.56) 2.3 (2.1–2.5) 4.6 (4.1– 5.1) 13.5 (12.3–14.9)
All except Xinyang 304 0.45 (0.35–0.57) 2.2 (2.1–2.5) 4.1 (3.7– 4.6) 12.3 (11.1–13.8)

Table 2: Results of the parametric inference. For each location and parameter, the maximum
likelihood estimator and the 95% confidence interval (in brackets) based on inverting the likelihood
ratio test are reported.

Gamma distribution in Assumption 4 by its median and 95% quantile and mapped them to α and β
when calculating the likelihood function. The growth exponent r was also transformed to the more
interpretable doubling time (in days) using doubling time = log(2)/r.

Because we only observed the date instead of the exact time for B, E, and S, we applied a simple
transformation before computing the likelihood function. Instead of using the integer date which
corresponds to the end of a day, we used B − 3/4, E − 1/4, and S − 1/2 in places of B, E, and S
to compute (18) and (19). This transformation also avoids a singularity in the likelihood function
when B and E are exactly equal.

Results

Results of the parametric model in Section 3 are reported in Table 2. We give some remarks about
the results:

(i) There is considerable heterogeneity of the estimated ρ (a parameter capturing the traveling
pattern) using the unconditional likelihood. This is not surprising given that the locations we
are considering are different in many ways.

(ii) Regardless of the location, our model shows that the epidemic doubling time in Wuhan was
less than 3 days. There is no substantial heterogeneity among estimates in different locations.
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(iii) The estimated incubation periods are similar for most locations except Xinyang, a less developed
city neighboring the Hubei province.

(iv) The conditional likelihood (18) and unconditional likelihood (19) give very similar results.
Confidence intervals computed using the unconditional likelihood are slightly shorter than
those computed using the conditional likelihood.

In conclusion, inferences based on our parametric model suggest that the initial doubling time
of the COVID-19 epidemic in Wuhan was between 2 to 2.5 days, the median incubation period of
COVID-19 is around 4 days, and the 95% quantile of the incubation period is between 11 to 15 days.

4 Why some previous COVID-19 analyses were severely biased

4.1 Estimating the epidemic growth: Bias due to sample selection

Like the present study, a highly influential article published in the Lancet in late January also used
Wuhan-exported cases to estimate the epidemic growth during the early outbreak [20]. However,
their estimated doubling time was 6.4 days (95% credible interval: 5.8–7.1), drastically higher than
the estimates in Table 2.

A closer look at the model in Wu et al. [20] shows that the most likely reason is that their model
did not consider how sample selection (in particular, the travel quarantine of Wuhan) changes the
likelihood function. This issue is best illustrated by examining the marginal distribution of symptom
onset in Wuhan-exported cases, which can be obtained by integrating the conditional density (17)
obtained earlier:

Proposition 2. Under Assumptions 1 to 3, 5 and 6, the marginal density of T given (B,E, T, S) ∈ D
for r > 5/L is approximately given by

fT (t | D) ∝∼ (L− t) exp(rt) · 1{t≤L}, (20)

where ∝∼ means approximately proportional to. If in addition the incubation period S − T follows a
Gamma(α, β) distribution (Assumption 4), the marginal density of S of the exported cases is given by

fS(s | D) ∝∼ exp(rs) ·
{

(L− s)[1−Hα,β+r((s− L)+)] +
α

β + r
[1−Hα+1,β+r((s− L)+)]

}
, (21)

and as a consequence,

fS(s | D) ∝∼ exp(rs) ·
(
L+

α

β + r
− s
)

for s ≤ L. (22)

Figure 5 shows the histogram of the symptom onset of the Wuhan-exported cases in our dataset
and the theoretical fit based on (21) and the maximum likelihood estimator in Table 2 using all the
locations (r = 0.30, α = 1.86, β = 0.33). The theoretical density provided good fit to the observed
distribution of S (Pearson’s χ2 goodness-of-fit test: p-value = 0.94).

Wu et al. [20] fitted a Susceptible-Exposed-Infectious-Recovered (SEIR) model using Wuhan-
exported cases but did not consider sample selection due to the travel quarantine. In the early phase
of epidemic outbreaks, the SEIR model can be well approximated by an exponential growth for cases
in Wuhan:

fS(s) ∝ exp(rs).

However, Proposition 2, in particular equation (22), shows that the marginal distribution of S in
Wuhan-exported cases fS(s | D) does not follow the same exponential growth as fS(s).
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Figure 5: Marginal distribution of symptom onset of Wuhan-exported COVID-19 cases. Histogram:
Density of the symptom onset date of the Wuhan-exported cases in our dataset; Orange curve:
Theoretical fit based on (21); Blue dashed line: Date of travel quarantine for Wuhan (January 23,
2020).

Equation (22) not only shows that fitting a simple exponential growth to the initial symptom
onsets among Wuhan-exported cases will under-estimate the epidemic growth r, we can also use it
to derive a simple bias-correction formula. By using the first-order Taylor expansion,

log fS(s | D) ≈ rs+ log
(
L+

α

β + r
− s
)

+ constant

≈ rs+ log
( α

β + r

)
+

L− s
α/(β + r)

+ constant

=
[
r − β + r

α

]
s+ constant.

Therefore the under-estimation bias is about (β + r)/α ≥ β/α = 1/E[S − T ]. This means that if
the mean incubation period is 5 days, fitting a simple exponential growth could under-estimate r by
as much as 0.2!

Using Wuhan-exported cases confirmed outside Mainland China by January 28, 2020, Wu et al.
[20] estimated that the doubling time of COVID-19 was about 6.4 days, which corresponds to
r = log(2)/6.2 ≈ 0.11. With the above correction, the actual r should be at least 0.11 + 0.2 ≈ 0.31,
or doubling time of 2.2 days. This is very close to our estimates in Table 2. Although the calculations
here are inexact, they clearly demonstrate that ignoring the sample selection due to travel quarantine
can lead to substantial under-estimation of the epidemic growth.
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4.2 Estimating the incubation period: When two biases do not “balance out”

Like the present study, several influential articles also estimated the incubation period of COVID-19
using Wuhan-exported cases [5, 11, 14]. Their results are roughly in line with our estimates in
Table 2, but a closer look shows that the existing methods actually suffer from two biases:

(i) Under-ascertainment bias: The three previous studies only used Wuhan-exported cases
confirmed before the end of January. In our dataset, about 70% of the Wuhan-exported cases
were confirmed by that time. However, the other 30% would have an incubation period of at
least 8 days as they must have left Wuhan before January 23. The lack of ascertainment leads
to under-estimation of the incubation period.

(ii) Epidemic growth bias: The three previous studies all used the interval-censored likelihood
function for the incubation period in Reich et al. [17]. As discussed after Proposition 1, this
likelihood corresponds to our conditional likelihood Lcond(α, β) with r fixed at 0 and thus
does not account for the rapid growth of COVID-19. Intuitively, a person in Wuhan has much
higher prior probability of contracting the virus on January 20 than on January 1, but the
likelihood function in Reich et al. [17] does not take that into account. Ignoring the epidemic
growth leads to over-estimation of the incubation period.

It is possible to correct for the under-ascertainment by further conditioning on S ≤ M (M is
some truncation time) in our likelihood function.

Proposition 3. Under Assumptions 1 and 2, for (b, e, t, s) ∈ D and s ≤M ,

fT,S(t, s | b, e,D, S ≤M) =
g(t)h(s− t)∫ max(e,s)

b g(t)H(M − t) dt
, (23)

where H(s) =
∫ s

0 h(x) dx is the distribution function of the incubation period. Furthermore, under the
exponential growth model (Assumption 3) and Gamma-distributed incubation period (Assumption 4),
the conditional observed data likelihood under the right truncation S ≤M is given by

Lcond,trunc(r, α, β;M)

=


rn
( β

β + r

)nα n∏
i=1

exp{r(Si −M)}[Hα,β+r(Si −Bi)−Hα,β+r((Si − Ei)+)]

Zr(M −Bi)− Zr((M − Ei)+)
, if r 6= 0,

n∏
i=1

Hα,β(Si −Bi)−Hα,β((Si − Ei)+)

Z0(M −Bi)− Z0((M − Ei)+)
, for r = 0,

(24)

where

Zr(x) =


( β

β + r

)α
Hα,β+r(x)− exp(−rx)Hα,β(x), for r 6= 0,

xHα,β(x)−
(α
β

)
Hα+1,β(x), for r = 0.

It is straightforward to show that Lcond,trunc(r, α, β;M) reduces to the conditional likelihood
Lcond(r, α, β) without the right truncation in (18) when M →∞.

We demonstrate the two kinds of biases in the estimation of the incubation period using a
retrospective experiment. In this experiment, we assumed the incubation period follows a Gamma
distribution and estimated its median and the 95% quantile by maximizing one of the following
three likelihood functions:
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(i) Adjusting for nothing: This is the likelihood function in Reich et al. [17] that is equal to
our Lcond(0, α, β) that sets r = 0.

(ii) Adjusting for growth: This is our conditional likelihood function Lcond(r, α, β).

(iii) Adjusting for both growth and ascertainment: This is our conditional likelihood
Lcond,trunc(r, α, β;M) with adjustment for sample selection due to the right truncation S ≤M .

For each day from January 23 to February 18, we estimated the incubation distribution using
Wuhan-exported cases in our dataset confirmed by that day. For the third method, we choose M
to be a week prior to the truncation date for confirmation, as most Wuhan-exported cases were
confirmed within a week of symptom onset. Figure 6 shows the estimated medians and 95% quantiles
of the incubation period of COVID-19, with pointwise confidence intervals in the plot computed
using the basic nonparametric bootstrap with 1000 resamples [8].

The under-ascertainment bias can be clearly visualized from the dotted blue curves in Figure 6.
Had we fitted our conditional likelihood function Lcond(r, α, β) using cases confirmed by January 31
(265 cases), the estimated median incubation period would be 3.5 days and the 95% quantile would
be 9.5 days. In comparison, when the entire dataset is used, the estimated median and 95% quantile
are 4.6 days and 13.5 days (Table 2).

The over-estimation due to ignoring the epidemic growth is even more dramatic. Had we fitted
the incubation period using the likelihood function in Reich et al. [17] (the same as setting r = 0
in our conditional likelihood) to all the cases in our dataset (387 cases), the estimated median
incubation period would be 9.2 days and the 95% quantile would be a whopping 24.9 days!

The truncation-corrected conditional likelihood Lcond,trunc(r, α, β;M) derived in Proposition 3
successfully corrected for the under-ascertainment bias. The estimated median and 95% quantile of
the incubation using Lcond,trunc(r, α, β;M) were roughly unbiased starting from the end of January.
Had we fitted this likelihood using all cases confirmed by January 31 and having shown symptoms a
week prior (220 cases), the estimated median incubation period would be 4.8 days (95% CI: 3.0 to
6.0) and the estimated 95% quantile would be 14.4 days (95% CI: 6.7 to 18.5). These estimates are
less precise than the estimates obtained using the entire dataset (Table 2), but they correctly reflect
the uncertainty due to the under-ascertainment. In contrast, using the wrong likelihood functions
not only results in biased point estimates but also narrow and misleading confidence intervals.

Because the under-ascertainment bias and epidemic growth bias are towards opposite directions,
coincidentally they were almost “balanced out” in the previous studies. As a consequence, their
estimates were not drastically different from ours. To be fair in this criticism, these previous studies
all acknowledged that under-ascertainment of mild cases could bias their analyses. Backer et al. [5]
mentioned the over-estimation due to ignoring epidemic growth in their discussion. Linton et al. [14]
attempted to use a formula to correct for under-ascertainment which bears some similarity to (23),
which resulted in slightly longer estimates of the incubation period. However, they did not give any
justification to the formula and we could not derive it from our generative model. Nevertheless, our
experiments in Figure 6 clearly show that these early estimates of the incubation period (especially
their tail estimates) are unreliable for making policy decisions.

5 Nonparametric inference

5.1 Time discretization

So far we have used parametric assumptions (e.g. Gamma-distributed incubation period) to explicitly
derive likelihood functions for the observed data. To assess the robustness of our results, next we
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Figure 6: An illustration of two kinds of biases in the estimation of the incubation period of
COVID-19. The curves (region) in the plot are maximum likelihood estimators (and bootstrap
confidence intervals) using three likelihood functions and cases confirmed by each day. Likelihood
functions used in this experiment are: Lcond(0, α, β) (dashed orange), Lcond(r, α, β) (dotted blue),
and Lcond,trunc(r, α, β;M) (solid green). Results of some previous studies [5, 11, 14] using the
conditional likelihood with r set to 0 are also shown in the Figure.
(Lauer et al. [11] did not report an estimated 95% quantile of the incubation period. Here we
imputed it based on the reported median and 97.5% quantile, assuming a Gamma distribution for
the incubation period. Although Lauer et al. [11] used COVID-19 cases confirmed as late as late
February, only 4 out of their 181 cases were confirmed in February. In this Figure it is thus treated
as using cases confirmed up till February 1.)
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will relax some of these parametric assumptions. In particular, we will model the distribution of the
incubation period nonparametrically so the tail probabilities are not determined by any parametric
form. Because analytic forms of the sample selection probabilities P((b, e, t, s) ∈ D | b, e) and
P((b, e, t, s) ∈ D) are generally unavailable, we will put prior distributions on the model parameters
and use Markov Chain Monte Carlo (MCMC) to compute their posterior distributions.

We start by discretizing all the time variables in the model, which are measured in days. This
will simplify the Bayesian computation. Instead of working with continuous time (B,E, T, S) ∈ P,
we use the discretization:

B∗ = dBe, E∗ = dEe, T ∗ = dT e, S∗ = dSe,

where d·e is the ceiling function (dxe is the smallest integer larger than x). The support of
(B∗, E∗, T ∗, S∗) is then P, the set of all 4-tuples of integers and ∞. The general continuous
distributions in Assumptions 1 and 2 can be modified accordingly:

P(T ∗ = t∗ | B∗ = b∗, E∗ = e∗) =

{
g∗(t∗), if b∗ ≤ t∗ ≤ e∗,
1−

∑e∗

t∗=b∗ g
∗(t∗), if t∗ =∞;

P(S∗ = s∗ | B∗ = b∗, E∗ = e∗, T ∗ = t∗) =

{
ν · h∗(s∗ − t∗), if t∗ ≤ s∗ <∞,
1− ν, if s∗ =∞,

where g∗(·) satisfies
∑L

x∗=0 g
∗(x∗) ≤ 1 and h∗(·) is a probability mass function on nonnegative

integers:
∑∞

x∗=0 h
∗(x∗) = 1.

5.2 Relaxing the parametric assumptions

Our parametric assumptions (Assumptions 3 to 6) on the distribution of (B,E, T, S) can be translated
to the following assumptions on (B∗, E∗, T ∗, S∗) after discretization:

g∗(t∗) ≈ gκ,r(t∗) = κ exp(rt∗), h∗(t∗ − s∗) ≈ hα,β(t∗ − s∗),

P(B∗ = b∗) =

{
(1− π), for b∗ = 0,

π/L, for b∗ = 1, . . . , L,

and

P(E∗ = e∗ | B∗ = b∗) =

{
λb∗ , for b∗ ≤ e∗ ≤ L,
1− (L− b∗ + 1)λb∗ , for e∗ =∞.

where λ0 = λW and λ1 = · · · = λL = λV .
In the nonparametric model we consider the following relaxations:

(i) Nonparametric distribution for the incubation period: Besides putting a prior en-
couraging smoothness and log-concavity, we do not put any parametric restrictions on the
distribution of the incubation period.

(ii) Two-stage exponential growth: Human-to-human transmissibility of COVID-19 is first
confirmed to the public in the evening of January 20. We modify the exponential growth model
to allow for a different growth exponent after January 20:

g∗(t∗) = g∗κ,r1,r2(t∗) =

{
κ exp(r1t

∗) if t ≤ L1,

κ exp(r2(t∗ − L1) + r∗1L1) if L1 < t ≤ L2,

where L1 = 51 (January 20) and L2 = L = 54 (January 23). The simple exponential growth
model is a special case of this model with both L1 and L2 set to L.
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(iii) Geometric distribution for E∗ | B∗: As a sensitivity analysis to our assumption that
E∗ | B∗ is uniformly distributed between B∗ and L, this relaxation assumes a geometric
distribution for E∗ | B∗:

P(E∗ = e∗ | E∗ ≥ e∗, B∗) =

{
ηB∗,1 if e∗ < Lchunyun,

ηB∗,2 if e∗ ≥ Lchunyun,

where Lchunyun = 41 corresponds to January 10, the start of the Chinese New Year travel
season known as “chunyun”. We assume η0,i = ηW,i and η1,i = · · · = ηL,i = ηV,i, for i = 1, 2.

Under these different modeling assumptions, likelihood functions for the parameters can be
computed in the same way as in Section 3.2, with integrals replaced by finite sums. We omit the
details here.

5.3 Prior distributions and details of the implementation

To simplify the computation, we assume the incubation period of COVID-19 is less than 30 days. It
is common to use a unimodal distribution with a smooth density function to model the incubation
period. We use the following prior distribution on h∗(·) to encourage smoothness and log-concavity:

π
(
h∗(0), . . . , h∗(29)

)
∝
( 29∏
x∗=0

h∗(x∗)µ·h0(x∗)−1
)

× exp
{ 28∑
x∗=1

(
2 log h∗(x∗)− log h∗(x∗ − 1)− log h∗(x∗ + 1)

)
−

}
.

(25)

where (·)− is the negative part function. The first part of the right hand side of (25) is proportional
to the density of a Dirichlet distribution with concentration parameters {µ · h0(0), . . . , µ · h0(29)}.
We choose h0(·) to be a discretization of Gamma(9, 1.5), whose tail probability of ≥ 14 days is less
than 0.01. The second part of the right hand side of (25) is an exponential tilt which penalizes lack
of log-concavity.

We put uninformative priors on other parameters in the model:

r1 ∼ Exp(1), r2 ∼ N(0, 4), κ ∼ Unif(0, 1), λW , λV ∼ Unif(0, 1/L).

Note that r2 is allowed to be negative (exponential decrease after January 20). For the model with a
geometric distribution for E∗ | B∗, we put Unif(0, 1) priors on ηW,1, ηW,2, ηV,1, ηV,2.

A random walk Metropolis–Hastings algorithm targeting the posterior distribution of h∗(·) and
r1, r2 was implemented using the TensorFlow Probability library in Python [6]. We simulated chains
of 10, 000 steps, discarding a burn-in period of 30%. The convergence of the sampler was assessed
by simulating 8 parallel Markov chains with initial values overdispersed with respect to the target
distribution, and computing the potential of scale reduction factor [10]. In every case, the statistic
was confidently below 1.1.

5.4 Results of Bayesian nonparametric inference

Table 3 reports the results of the Bayesian nonparametric inference in 7 different scenarios. Overall,
they are not too dissimilar to the results of the parametric model in Table 2. In particular, the bulk
of nonparametrically estimated incubation period is quite similar to the Gamma distribution fitted
in Section 3 (Figure 7a).
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Figure 7: An illustration of the nonparametric Bayesian fit to the incubation period distribution.
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Sample All All Shenzhen Wuhan residents All except Xinyang All All
Growth r1 r1 r1 r1 r1 r1, r2 r1, r2

E∗ | B∗ Uniform Uniform Uniform Uniform Uniform Uniform Geometric
µ µ = 1 µ = 10 µ = 1 µ = 1 µ = 10 µ = 1 µ = 1

Doubling days for r1 2.4 (2.2–2.6) 2.4 (2.2–2.6) 2.5 (2.2–2.9) 2.3 (2.1–2.5) 2.4 (2.2–2.6) 2.2 (2.0–2.4) 2.2 (2.0–2.5)
r2 (Growth in Jan. 21–23) – – – – – .03 (-.20–.22) -.11 (-.38–.12)

Incubation
period

Mean 5.6 (5.1–6.2) 5.5 (5.1–5.9) 4.7 (3.8–6.2) 5.6 (5.1–6.2) 5.2 (4.7–5.6) 5.7 (5.1–6.3) 5.8 (5.3–6.5)
P(≥ 7) .32 (.25–.39) .31 (.25–.38) .23 (.13–.35) .30 (.24–.37) .26 (.22–.31) .06 (.03–.08) .06 (.03–.09)
P(≥ 10) .19 (.14–.24) .18 (.14–.23) .11 (.06–.19) .20 (.13–.26) .15 (.12–.21) .19 (.15–.25) .20 (.15–.27)
P(≥ 14) .05 (.03–.08) .04 (.02–.06) .05 (.01–.12) .05 (.03–.08) .05 (.03–.07) .06 (.03–.08) .06 (.03–.09)
P(≥ 21) .01 (.00–.01) .00 (.00–.00) .02 (.00–.08) .01 (.00–.03) .01 (.00–.03) .01 (.01–.02) .01 (.00–.03)

Table 3: Results of the nonparametric Bayesian inference where we do not impose a parametric form for the distribution of the incubation
period. As sensitivity analyses, we also vary the study sample, model for the epidemic growth, distribution of E∗ given B∗, and the
hyperprior parameter µ. Numbers reported in the table are posterior means and 95% credible intervals (in brackets).
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However, there is still a noticeable difference between the parametric and nonparametric fits.
Without restricting the tail to follow that of a Gamma distribution, the estimated tail probabilities
are higher than in Table 2. The posterior mean for P(S∗−T ∗ ≥ 14 days) exceeds 0.04 in all scenarios,
even when we exclude the cases confirmed in Xinyang who seemed to have longer incubation periods
in Table 2. Moreover, prior and posterior distributions of P(S∗ − T ∗ ≥ 14 days) show a large
discrepancy (Figure 7b), indicating that the posterior estimates of the tail probabilities are driven
by the data instead of the prior. Taken together, this shows that the the restriction to the family
of Gamma distributions (Assumption 3) very likely lead to under-estimation of the tail incubation
period, and the probability of an incubation period of at least 14 days may be as large as 5%.

6 Discussion

In this article, we have proposed the generative BETS model for four key epidemiological events:
beginning of exposure, end of exposure, time of transmission, and time of symptom onset. Under
parametric models, we have derived the sample inclusion probability for exported cases and used it
to correct for selection bias in the likelihood functions. Across different subsamples and modeling
assumptions, the initial epidemic doubling time for COVID-19 in Wuhan was consistently estimated
to be between 2 to 2.5 days. Our nonparametric Bayesian analysis suggests that the parametric
fit likely under-estimated the tail of the incubation period, and among all the COVID-19 patients
who develop symptoms, 5% of them could develop the symptoms at least 14 days after contracting
the pathogenic virus. These estimates are pertinent to public health policies for the COVID-19
pandemic.

In addition to constructing a generative model and deriving the likelihood functions from first
principles, we have also exposed the dangers of selection bias in some early epidemiological analyses
of COVID-19. We find that the severity of selection bias was startling. This highlights the lesson
that, when evaluating epidemiological and other real data studies, data quality and methodical
considerations of selection bias are often much more important than data quantity and specific
parametric models. This is especially important in high-stake decisions like the ones for the ongoing
pandemic.

A key epidemiological parameter we decided not to study in this article is the basic reproduction
number, commonly denoted by R0. Intuitively, R0 is the expected number of secondary infections
produced by a typical case in a population where everyone is susceptible. In early outbreak analysis,
R0 can be estimated from the epidemic growth exponent r by R0 = 1/M(−r) [19], where M(·) is
the moment generating function for the distribution of the serial interval (time between successive
cases in a chain of transmission). Several studies have attempted to estimate the serial interval
of COVID-19 in Wuhan by using observed pairs of infector-infectees [13, 15, 7]. The reported
point estimate of the mean serial interval ranging from 4.0 [7] to 7.5 days [13]. However, for most
COVID-19 cases it is impossible to ascertain the infector, so these early estimates of the serial
interval could be severely biased by sample selection just like the early estimates of epidemic growth
and incubation period as seen in Section 4.

Our findings in this article should be viewed together with limitations of our methodology.
Although the contact tracing for travelers from Wuhan was intensive in the locations included in our
dataset, some degree of under-ascertainment of Wuhan-exported cases is perhaps inevitable. There
is also ambiguity about where some COVID-19 cases were infected if they both had stayed in Wuhan
and were exposed to other confirmed cases after their stay. At the core of the BETS model, it is
assumed that the disease transmission and progression are independent of traveling. This assumption
is necessary to extend the conclusions from a “shadow” of the epidemic (Wuhan-exported cases)
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to the center of the outbreak, but it can be violated if, for example, some people canceled travel
plans due to feeling sick. It is also possible that the population of travelers is not representative of
the general population in a meaningful way. Nevertheless, we believe these limitations are minor
compared to ignoring the selection bias. We hope the generality of our model also makes it extensible
in further studies of the current pandemic and other outbreaks in the future.
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A Technical proofs

A.1 Derivation of Lemma 1

Using eqs. (3) and (4), it is straightforward to show that

P((B,E, T, S) ∈ D | B = b, E = e)

=P(b ≤ T ≤ e, T ≤ S <∞ | B = b, E = e)

=

∫
t∈(b,e)

fT (t | b, e)
∫
s∈(t,∞)

fS(s | b, e, t) ds dt

=

∫
t∈(b,e)

fT (t | b, e)
{∫

s∈(t,∞)
ν · h(s− t) ds

}
dt

=

∫
t∈(b,e)

fT (t | b, e) · ν dt

=ν[G(e)−G(b)].

A.2 Derivation of Lemma 2

By Assumption 3, Gκ,r(t) =
∫ t
−∞ gκ,r(s) ds = (κ/r) exp(rt). Thus for b > 0, we have

P((b, E, T, S) ∈ D | B = b)

=ν

∫
e∈(b,L)

fE(e | b)
[
Gκ,r(e)−Gκ,r(b)

]
de

=ν

∫ L

b
λV (κ/r) {exp(re)− exp(rb)} de

=
λV κν

r

[1

r

(
exp(rL)− exp(rb)

)
− (L− b) exp(rb)

]
=
λV κν

r2
exp(rL)− λV κ

r
(r−1 + L− b) exp(rb)

=
λV κν

r2
exp(rL)

[
1− (1 + r(L− b)) exp(−r(L− b))

]
.

(26)

For b = 0, we can replace λV in the above equation by λW .
The idea is that, if rL is much larger than 1 (in our preliminary analysis rL ≈ 0.25× 54 = 13.5),

then
Right hand side of (26) ≈ νλWκ

r2
exp(rL) when b = 0.
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Using this approximation, we obtain

P((B,E, T, S) ∈ D)

=

∫
0≤b<L

P((b, E, T, S) ∈ D | B = b) fB(b) db

=P(B = 0) · P((b, E, T, S) ∈ D | B = 0) +

∫
0<b<L

P((b, E, T, S) ∈ D | B = b) fB(b) db

≈(1− π)λWκν

r2
exp(rL) +

∫
0<b<L

P((b, E, T, S) ∈ D | B = b) fB(b) db

=
(1− π)λWκν

r2
exp(rL) + π

∫ L

0

1

L

λV κν

r2
exp(rL)

[
1− (1 + r(L− b)) exp(−r(L− b))

]
db

=
(1− π)λWκν

r2
exp(rL) +

πλV κν

r2
exp(rL)− π

L

λV κν

r2
exp(rL)

∫ L

0

[
(1 + r(L− b)) exp(−r(L− b))

]
︸ ︷︷ ︸

A1

db

≈κ exp(rL)ν

r2

[
(1− π)λW + πλV (1− 2/(rL))

]
.

In the last step we used the approximation erL � 1 + rL:

A1 =

∫ L

0
(1 + rx) exp(−rx) dx = −exp(−rx)(rx+ 2)

r

∣∣∣x=L

x=0
=

2

r
− exp(−rL)(rL+ 2)

L
≈ 2

r
.

Therefore, the conditional density is given by

f(b, e, t, s | D) ≈
[(1− π)λW 1{b=0} + (π/L)λV 1{b>0}] · κ exp(rt) · νh(s− t)

r−2κ exp(rL)ν
[
(1− π)λW + πλV (1− 2/(rL))

]
=r2 ·

[(1− π)λW 1{b=0} + (π/L)λV 1{b>0}] · exp(rt)[
(1− π)λW + πλV (1− 2/(rL))

]
· exp(rL)

· h(s− t)

=r2 ·
[1{b=0} + (ρ/L)1{b>0}] · exp(rt)[

1 + ρ(1− 2/(rL))
]
· exp(rL)

· h(s− t),

where ρ = (λV /λW )π/(1− π).

A.3 Derivation of Proposition 1

The following Lemma is useful to marginalize over T when the incubation period follows a
Gamma(α, β) distribution:

Lemma 3. For any r > 0 and b ≤ e ≤ s,∫ min(s,e)

b
exp(rt)hα,β(s− t) dt =

( β

β + r

)α
exp(rs)

[
Hα,β+r(s− b)−Hα,β+r((s− e)+)

]
.
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Proof. By a change of variables,∫ min(s,e)

b
exp(rt)hα,β(s− t) dt

=

∫ min(s,e)

b
exp(rt)

βα

Γ(α)
(s− t)α−1 exp{−β(s− t)} dt

=
( β

β + r

)α
exp(rs)

∫ min(s,e)

b

(β + r)α

Γ(α)
(s− t)α−1 exp{−(β + r)(s− t)} dt

=
( β

β + r

)α
exp(rs)

[
Hα,β+r(s− b)−Hα,β+r((s− e)+)

]
.

The time of contraction T is not observed. Should it be observed, the full data unconditional
likelihood is given by

Luncond
(
ρ, r, h(·);T

)
=

n∏
i=1

f(Bi, Ei, Ti, Si | (Bi, Ei, Ti, Si) ∈ D)

≈r2n ·
n∏
i=1

1{Bi=0} + (ρ/L)1{Bi>0}

1 + ρ(1− 2/(rL))
·
n∏
i=1

1{Bi≤Ti≤min(Ei,Si)} · exp(r(Ti − L)) · h(Si − Ti)︸ ︷︷ ︸
A2,i

.

If we assume h(·) is the density of a Gamma distribution:

h(x) = hα,β(x) =
βα

Γ(α)
xα−1 exp(−βx) (x > 0),

then we can marginalize over Ti using Lemma 3:∫
A2,i dTi = exp

{
r(Si − L)

}( β

β + r

)α
·
[
Hα,β+r(Si −Bi)−Hα,β+r((Si − Ei)+)

]
,

In conclusion, the unconditional observed data likelihood is given by

Luncond(ρ, r, α, β) ≈ r2n
( β

β + r

)nα
·
n∏
i=1

{
1{Bi=0} + (ρ/L)1{Bi>0}

1 + ρ(1− 2/(rL))

× exp
{
r(Si − L)

}[
Hα,β+r(Si −Bi)−Hα,β+r((Si − Ei)+)

]}
.

The conditional observed data likelihood can be derived in the same way. Details are omitted.
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A.4 Derivation of Proposition 2

By integrating the conditional density (17) over (b, e, s), the marginal distribution of T conditional
on (B,E, T, S) ∈ D is given by

fT (t | D) =

∫
(b,e,t,s)∈D

f(b, e, t, s | D) db de ds

≈
∫ t

0

∫ L

t

∫ ∞
t

r2 ·
[1{b=0} + (ρ/L)1{b>0}] · exp(rt)[

1 + ρ(1− 2/(rL))
]
· exp(rL)

· h(s− t) ds de db

=

∫ t

0

∫ L

t
r2 ·

[1{b=0} + (ρ/L)1{b>0}] · exp(rt)[
1 + ρ(1− 2/(rL))

]
· exp(rL)

de db

=

∫ t

0
(L− t)r2 ·

[1{b=0} + (ρ/L)1{b>0}] · exp(rt)[
1 + ρ(1− 2/(rL))

]
· exp(rL)

db

= r2(L− t) · (1 + (ρt/L)) · exp(rt)[
1 + ρ(1− 2/(rL))

]
· exp(rL)

∝ (L− t)(1 + (ρt/L)) exp(rt)

∝∼ (L− t) exp(rt).

Assumption 2 says that the distribution of the symptom onset S only depends the time of
transmission T , that is S ⊥⊥ B,S | T . Therefore the marginal distribution of S in Wuhan-exported
cases is given by convolving the distribution of T with the distribution of the incubation period
S − T :

fS(s | D) =

∫ min(L,s)

0
fT (t | D)h(t− s) dt

Under the parametric assumption that S − T follows a Gamma distribution (Assumption 4), we
have (let x = s− t)

fS(s | D) ∝∼
∫ min(L,s)

0
(L− t) exp(rt) · (s− t)α−1 exp{−β(s− t)} dt

= exp(rs) ·
∫ min(L,s)

0
[(L− s) + (s− t)](s− t)α−1 exp{−(β + r)(s− t)} dt

= exp(rs) ·
∫ s

(s−L)+)
[(L− s)xα−1 + xα] exp{−(β + r)x} dx

= exp(rs) ·
{

(L− s) Γ(α)

(β + r)α
[
Hα,β+r(s)−Hα,β+r((s− L)+)

]
+

Γ(α+ 1)

(β + r)α+1

[
Hα+1,β+r(s)−Hα+1,β+r((s− L)+)

]}
= exp(rs) ·

{
(L− s)

[
Hα,β+r(s)−Hα,β+r((s− L)+)

]
+

α

β + r

[
Hα+1,β+r(s)−Hα+1,β+r((s− L)+)

]}
≈ exp(rs) ·

{
(L− s)[1−Hα,β+r((s− L)+)] +

α

β + r
[1−Hα+1,β+r((s− L)+)]

}
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A.5 Derivation of Proposition 3

Let e− = min(e,M). Then under Assumptions 1 and 2, for (b, e, t, s) ∈ D and s ≤M ,

fT,S(t, s | b, e,D, S ≤M) =
fT,S(t, s | b, e,D)∫ ∫
fT,S(t, s | b, e,D) ds dt

=
g(t)h(s− t)∫ e−

b g(t)
∫M
t h(s− t) ds dt

=
g(t)h(s− t)∫ e−

b g(t)H(M − t) dt
,

(27)

where H(s) =
∫ s

0 h(x) dx is the distribution function of the incubation period. Assuming g(t) =
κ exp(rt) and using integration by parts, for r 6= 0,∫ e−

b
g(t)H(M − t) dt =κ

∫ e−

b
exp(rt)H(M − t) dt

=
κ

r

∫ e−

b
H(M − t) d exp(rt)

=
κ

r

[
exp(rt)H(M − t)

∣∣∣t=e−
t=b

+

∫ e−

b
exp(rt)h(M − t) dt

]
.

By using h(·) = hα,β(·) and using Lemma 3, we have∫ e−

b
g(t)Hα,β(M − t) dt =

κ

r

[
exp(rt)Hα,β(M − t)−

( β

β + r

)α
exp(rM)Hα,β+r(M − t)

]∣∣∣∣t=e−
t=b

.

Now we integrate t in (27) from b to e− and get

fS(s | b, e,D, S ≤M)

=
r
(

β
β+r

)α
exp(rs)

[
Hα,β+r(s− b)−Hα,β+r((s− e)+)

]
[

exp(rt)Hα,β(M − t)−
(

β
β+r

)α
exp(rM)Hα,β+r(M − t)

]∣∣∣∣t=e−
t=b

.

For r = 0, using integration by parts,∫ e−

b
g(t)Hα,β(M − t) dt =κ

∫ M−b

(M−e)+
Hα,β(x) dx

=κ
[
xHα,β(x)

∣∣∣x=M−b

x=(M−e)+
−
∫ M−b

(M−e)+
xhα,β(x) dx

]
=κ
[
xHα,β(x)

∣∣∣x=M−b

x=(M−e)+
−
∫ M−b

(M−e)+
x · β

α

Γ(α)
xα−1 exp(−βx) dx

]
=κ
[
xHα,β(x)

∣∣∣x=M−b

x=(M−e)+
− α

β

∫ M−b

(M−e)+

βα+1

Γ(α+ 1)
xα exp(−βx) dx

]
=κ
[
xHα,β(x)− α

β
Hα+1,β(x)

]∣∣∣∣x=M−b

x=(M−e)+
.

We can similarly integrate t out and obtain the full data likelihood. Details are ommited.
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