Por favor, use este identificador para citar o enlazar este ítem: http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/1891
Estimating required lockdown cycles before immunity to SARS-CoV-2: Model-based analyses of susceptible population sizes, S0, in seven European countries including the UK and Ireland
Rosalyn J Moran.
Erik D Fagerholm.
Jean Daunizeau.
Maell Cullen.
Mark P Richardson.
Steven Williams.
Federico Turkheimer.
Rob Leech.
Karl Friston.
Acceso Abierto
Atribución-NoComercial-SinDerivadas
10.1101/2020.04.10.20060426
Background: Following stringent social distancing measures, some European countries are beginning to report a slowed or negative rate of growth of daily case numbers testing positive for the novel coronavirus. The notion that the first wave of infection is close to its peak begs the question of whether future peaks or second waves are likely. We sought to determine the current size of the effective (i.e. susceptible) population for seven European countries - to estimate immunity levels following this first wave. We compare these numbers to the total population sizes of these countries, in order to investigate the potential for future peaks. Methods: We used Bayesian model inversion to estimate epidemic parameters from the reported case and death rates from seven countries using data from late January 2020 to April 5th 2020. Two distinct generative model types were employed: first a continuous time dynamical-systems implementation of a Susceptible-Exposed-Infectious-Recovered (SEIR) model and second: a partially observable Markov Decision Process (MDP) or hidden Markov model (HMM) implementation of an SEIR model. Both models parameterise the size of the initial susceptible population (S0), as well as epidemic parameters. Parameter estimation (data fitting) was performed using a standard Bayesian scheme (variational Laplace) designed to allow for latent unobservable states and uncertainty in model parameters. Results: Both models recapitulated the dynamics of transmissions and disease as given by case and death rates. The peaks of the current waves were predicted to be in the past for four countries (Italy, Spain, Germany and Switzerland) and to emerge in 0.5-2 weeks in Ireland and 1-3 weeks in the UK. For France one model estimated the peak within the past week and the other in the future in two weeks. Crucially, Maximum a posteriori (MAP) estimates of S0 for each country indicated effective population sizes of below 20% (of total population size), under both the continuous time and HMM models. Using for all countries, with a Bayesian weighted average across all seven countries and both models, we estimated that 6.4% of the total population would be immune. From the two models the maximum percentage of the effective population was estimated at 19.6% of the total population for the UK, 16.7% for Ireland, 11.4% for Italy, 12.8% for Spain, 18.8% for France, 4.7% for Germany and 12.9% for Switzerland. Conclusion: Our results indicate that after the current wave, a large proportion of the total population will remain without immunity. This suggests that in the absence of strong seasonal effects, new medications or more comprehensive contact tracing, a further set of epidemic waves in different geographic centres are likely. These findings may have implications for exit strategies from any lockdown stage.
www.medrxiv.org
2020
Artículo
https://www.medrxiv.org/content/10.1101/2020.04.10.20060426v1.full.pdf
Inglés
VIRUS RESPIRATORIOS
Aparece en las colecciones: Artículos científicos

Cargar archivos:


Fichero Tamaño Formato  
1100783.pdf1.08 MBAdobe PDFVisualizar/Abrir