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Abstract 

 

Background: Following stringent social distancing measures, some European countries are beginning to 

report a slowed or negative rate of growth of daily case numbers testing positive for the novel 

coronavirus. The notion that the first wave of infection is close to its peak begs the question of whether 

future peaks or ‘second waves’ are likely. We sought to determine the current size of the effective (i.e. 

susceptible) population for seven European countries—to estimate immunity levels following this first 

wave. We compare these numbers to the total population sizes of these countries, in order to investigate 

the potential for future peaks. 

 

Methods: We used Bayesian model inversion to estimate epidemic parameters from the reported case 

and death rates from seven countries using data from late January 2020 to April 5th 2020. Two distinct 

generative model types were employed: first a continuous time dynamical-systems implementation of a 

Susceptible-Exposed-Infectious-Recovered (SEIR) model and second: a partially observable Markov 

Decision Process (MDP) or hidden Markov model (HMM) implementation of an SEIR model. Both models 

parameterise the size of the initial susceptible population (‘S0’), as well as epidemic parameters. 

Parameter estimation (‘data fitting’) was performed using a standard Bayesian scheme (variational 

Laplace) designed to allow for latent unobservable states and uncertainty in model parameters.  

 

Results: Both models recapitulated the dynamics of transmissions and disease as given by case and death 

rates. The peaks of the current waves were predicted to be in the past for four countries (Italy, Spain, 

Germany and Switzerland) and to emerge in 0.5 – 2 weeks in Ireland and 1-3 weeks in the UK. For France 

one model estimated the peak within the past week and the other in the future in two weeks. Crucially, 

Maximum a posteriori (MAP) estimates of S0 for each country indicated effective population sizes of 

below 20% (of total population size), under both the continuous time and HMM models.  Using for all 

countries—with a Bayesian weighted average across all seven countries and both models, we estimated 

that 6.4% of the total population would be immune. From the two models the maximum percentage of 

the effective population was estimated at 19.6% of the total population for the UK, 16.7% for Ireland, 

11.4% for Italy, 12.8% for Spain, 18.8% for France, 4.7% for Germany and 12.9% for Switzerland. 

 

Conclusion: Our results indicate that after the current wave, a large proportion of the total population 

will remain without immunity. This suggests that in the absence of strong seasonal effects, new 

medications or more comprehensive contact tracing, a further set of epidemic waves in different 

geographic centres are likely. These findings may have implications for ‘exit strategies’ from any 

lockdown stage. 
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Introduction 

 

As of early April 2020, the Coronavirus pandemic has reached different epidemic stages across the world.  

France was the earliest affected country in Europe with its first reported cases on 24th January 2020 

(Reusken, Broberg et al. 2020) with cases reported shortly after in Germany, then the United Kingdom, 

Italy, Spain, Switzerland and in Ireland on February 29th. Subsequently outbreaks have emerged across 

the European continent. The daily rates of new confirmed cases of the Covid-19 virus (SARS-CoV-2) have 

begun to decrease in some of these countries; in particular, in Italy and Spain, with promising signs that 

extensive social distancing measures have been effective and that these countries have reached or are 

past ‘the peak’ of infections. Epidemiological models that predict the progression of populations from 

Susceptible (S) to Exposed (E), Infected (I) and Recovered (R) (SEIR models (Kermack and McKendrick 

1927)) can be used to investigate the properties of these peaks, given the initial susceptibility of a 

population. For SARS-CoV-2, no (or limited) immunity can be assumed a priori in humans and thus the 

majority of the entire population is deemed susceptible (Team 2020).       

 

Several studies have developed and simulated SEIR models using epidemic parameters to ‘nowcast’ and 

forecast transmission (Wu, Leung et al. 2020). Parameters of the model are being continuously improved 

and modified, such as reduced serial interval estimates (Nishiura, Linton et al. 2020, Yang, Zeng et al. 

2020), initially derived from observed cases in the initial outbreak in Wuhan, China (Sun, Chen et al. 2020, 

Wang, Liu et al. 2020, Wang, Wang et al. 2020). In most studies, these compartmental models are applied 

as dynamic generative (i.e., causal or mechanistic) models that assume a set of parameters and predict 

cases or clinical resources (Moghadas, Shoukat et al. 2020) and intervention effects (Prem, Liu et al. 2020, 

Wells, Sah et al. 2020). The (initial) susceptible size of a population (termed ‘S0’) is assumed to be the size 

of a particular city, e.g. 10 million in Wuhan (Prem, Liu et al. 2020) or—for a country—is assumed to 

comprise of multiples of smaller city sized outbreaks e.g. 100k (Ferguson, Laydon et al. 2020). Such 

models have lent important insight into the likely disease and clinical trajectories of countries as a whole, 

enabling planning and management for predicted numbers of cases requiring hospitalization and 

ventilation (Moghadas, Shoukat et al. 2020).      

 

Given the lockdowns around Europe which likely averted larger case surges (Wang, Liu et al. 2020), we 

sought to investigate the current effective population size in seven European countries. Therefore, we 

used the SEIR model to determine the initial population size (S0) that was susceptible (i.e., would 

eventually become infected) at the beginning of the first wave and thus determine the levels of immunity 

that might exist in these countries after this wave, (by assuming the susceptible population will 

eventually become infected and develop immunity). One approach, to perform this inverse modelling, is 

to apply dynamic causal modelling (Friston, Mattout et al. 2007)—enabling the incorporation of prior 
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values for parameters (e.g. the serial interval, incubation period or number of daily contacts) and prior 

uncertainty about these values.  

 

Quarantine and social isolation are often explicitly accounted for in SEIR models (Wearing, Rohani et al. 

2005, Feng 2007, Ridenhour, Kowalik et al. 2018) making them appropriate for the current Government 

advised social distancing. Importantly, two particular forms of this SEIR model (with social distancing) 

have recently been developed (Friston, Parr et al. 2020, Moghadas, Shoukat et al. 2020) that also account 

for deaths following hospitalization or treatment via ventilation within an Intensive Care Unit (ICU). 

Specifically, they account for a potential time lag between becoming infected and developing acute 

respiratory distress. This makes these models putatively ‘fit for purpose’, when using death as well as 

case reporting data to fit or invert the models to recover (posterior) parameter values—and estimate 

their uncertainty. 

 

We aimed to apply these two models to data from seven countries: including Ireland, the United 

Kingdom, Italy, Spain, France, Germany and Switzerland. Our goal was to estimate S0. One model, (the 

‘ODE model’—see Methods and (Moghadas, Shoukat et al. 2020)) is based on a classical compartment 

model where a person in an epidemic can occupy only one compartment or ‘state’ and moves from state 

to state: from Susceptible to eventually (through intermediate states) either Recovery or Death. The 

other model—the ‘HMM model’ (Friston, Parr et al. 2020)—features several factors that change 

together; including where a person is located (out of the home vs. in the home, for example), as well as 

their infectious, testing and clinical status. We apply both models to daily case and death reports to 

assess whether there is convergence on estimates of the initially susceptible (i.e., effective) population 

sizes. 

 

Methods 

 

Data 

Data from a repository for the 2019 Novel Coronavirus at John’s Hopkins University Center for Systems 

Science and Engineering (JHU CSSE) were used (Dong, Du et al. 2020).      Using these date-stamped 

entries of daily reported cases and reported deaths, we extracted seven timeseries pairs for the countries 

(including all territories) of Ireland, the United Kingdom, Italy, Spain, Germany, France and Switzerland. 

Data records from January 22nd to April 5th, 2020 were modelled. For the ordinary differential equation 

(ODE) model, daily cases and daily accumulated deaths were fitted while for the HMM model, daily cases 

and daily deaths were fitted, corresponding to the state equations (see (Friston, Parr et al. 2020)). 

 

Models 
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ODE Model: A dynamic transmission model comprising a set of 12 coupled ordinary differential equations 

was adapted from Moghadas et al. (Moghadas, Shoukat et al. 2020). The original model included 12 

states for four different age categories. We simplified the model structure by collapsing across age (see 

Appendix A). The 12 states or compartments in this simplified model (flow function, Figure 1) described 

susceptible (S) individuals who became infected with the disease through exposure (E) to other infected 

individuals. Infected individuals comprised three categories, an Asymptomatic or subclinical state (A), a 

symptomatic state who would not require hospitalization (InH) and a symptomatic state who would 

require hospitalization (IH). Each of these infected categories could also self-isolate – representing three 

more states defined by lower a priori contacts. People in states InH and A were assumed to recover, 

while those in states (IH) would transition to either hospitalized (H) or ICU states (ICU). From these states 

people would recover (R) or die (D), Figure 1. Time constants of the mode included the incubation period, 

recovery period, time to self-isolate, time from symptom onset to hospitalization, time from ICU 

admission to death, time from non-ICU admission to death, length of stay in ICU and length of hospital 

stay. Parameters controlling proportions that entered branching states (e.g. proportion of all hospitalised 

cases admitted to ICU were also included (see Appendix A for full parameter list) as well as the 

transmission rate and contact per day either within or without self-isolation. Parameters were equipped 

with a priori values and optimisation was performed on log scale factors to ensure positivity (Appendix A) 

of these proportions and rate constants. To link these ODEs to the observed data we employed an 

observer function which assumed a variable rate of case reporting for symptomatic (without requiring 

hospitalization) and asymptomatic individuals. A priori we assumed that only 1% of individuals infected 

who were asymptomatic received tests. We assumed that 20% of symptomatic cases who do not require 

hospitalization receive tests. And that 100% of infected individuals who are hospitalised receive tests. 

The levels of 1% and 20% testing were free parameters in our model. The 100% for hospitalised tests was 

fixed. Finally, 100% of deaths were assumed to be recorded. Finally, we placed a prior on the initial 

number of individuals in each state. A priori, we assume 100 individuals in infected states. We tested two 

alternatives for S0: 

 

In the ODE model (Model: ODE) we initialised S0 to 1 Million x 𝜃_𝑆0 individuals, where  𝜃_𝑆0  = 1. This 

parameter would be optimised for each individual dataset and so could accommodate total sizes; e.g. if 

𝜃_𝑆0  = 4.9 a posteriori then the total population of Ireland would be considered initially susceptible. 

 

We also tested a ‘cities’-based version of the ODE model (Model: ODE_City) that might recapitulate the 

death and case rates for each country. For this, we altered the observer function and imposed a prior of 1 

Million x 𝜃_𝑆0 individuals, where  𝜃_𝑆0  = 1. Then we scaled the case and death rates by the population in 

millions (See Appendix A for equations). For this if we obtained 𝜃_𝑁0 = 1 a posteriori then the total initial 
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susceptible population would also correspond to the total population of Ireland, but the epidemic 

dynamic would comprise 4.9 distinct outbreaks. 

 

 
Figure 1. Left: Flow function, or population dynamics. From the susceptible state (where initially at 

time t= 0S = S0), the infected population will enter one of three categories: IH (infected requiring 

hospitalization), InH (infected NOT requiring Hospitalization), or A (asymptomatic). From the IH state, 

subjects transfer either to H (Hospital) or ICU, from which subjects transfer either to R or D. Both the 

InH and A states lead to Recovery (R).  The observer function evaluates the dependent variable at each 

iteration of the integration process of the flow function. The resultant model-based data is compared 

against empirical JHU data. Right: Network showing the transition between states for the HMM model. 

The ODE model is a 12-compartmental model—with one factor with 12 states). The HMM model is a 

256-compartment model—with four factors (location, infection and clinical) each with four levels, 

giving 44 = 256 states. The structural difference between the ODE and HMM model rests upon the 

allowable combination of factors that describe the state of an individual in a population. For example, 

in the factorial (HMM) model it is possible to die from acute respiratory distress at (e.g. a care) home. 

Conversely, in the ODE model, one can only die after being in hospital. Certain transitions among these 

states are allowable. For example, in the ‘testing’ factor, an individual could transit from untested to 

waiting to a positive result. Or an individual could transition from untested to untested—where they 

remain untested even if they are infected (see (Friston, Parr et al. 2020) for a priori probability values). 

 

 

HMM model: Our second model of the cases and death rates was a Dynamic Causal Model of Covid-19. 

See (Friston, Parr et al. 2020) for a complete description of the model. In brief, the model represents four 
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factors describing location, infection status, test status and clinical status. Within each factor people may 

transition among four states probabilistically. The transitions generate predicted outcomes; for example, 

the number of people newly infected who have tested positive or the number of people newly infected 

who will remain untested. The location factor describes if an individual is at home, at work, in a critical 

care unit (CCU) or deceased. Similar to the early states in the ODE model, the HMM has a second factor 

describing infection status susceptible, infected, infectious or immune, where it is assumed that there is a 

progression from a state of susceptibility to immunity—through a period of (pre-contagious) infection to 

an infectious (contagious) status. The Clinical status factor comprises asymptomatic, symptomatic, acute 

respiratory distress syndrome (ARDS) or deceased. Finally, the fourth factor represents diagnostic status 

where an individual can be untested or waiting for the results of a test that can either be positive or 

negative. As with the ODE model, transitions amongst states are controlled by rate constants (inverse 

time constants) and non-negative probabilities. Similar to the ODE model above, we initialised (and set as 

priors) S0 to 1 Million x 𝜃_𝑆0 individuals, where  𝜃_𝑆0  = 1.  

 

For the HMM and both ODE models (ODE model and ODE_City) to estimate the model parameters, we 

employed a standard (variational Laplace) Bayesian scheme to optimise parameters of corresponding 

DCM (spm_NLSI_GN) (Friston, Mattout et al. 2007). 

 

 

 

Results 

 

The key aim of our analysis was to estimate the likely immunity after the current set of cases and deaths. 

To ascertain the initial susceptibility S0, we examined the posterior estimate from both model types and 

its Bayesian credible intervals. However, first we examined the evidence for each model, relative to the 

worst performing model. We used two ODE models, with different constructs for epidemic sizes/meta-

populations. The first ODE model (ODE) assumed a prior of 1 million susceptible individuals (S0), the. The 

second ODE model accounted for several effective populations of size 1 million (ODE_City). The third 

model was the HMM model, which also assumed a prior of 1 million initial susceptible individuals. Of all 

three models, ODE_City was the worst performing model for all countries data (Figure 2A).  

 

From the two better performing models, we then estimated the effective population size of S0=S(t=0) as 

a proportion of the total population (Figure 2B). Taking a Bayesian average—across all models and 

countries—the estimated proportion of people that were initially susceptible at the start of this 

outbreak—and thus immune at the end of the outbreak—was 6.4% of the total population of each 

country.  
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The ODE model produced consistently higher estimates of S0 at the end of the wave than the HMM. 

These values suggest that after the current wave of cases, between 3 (lowest estimates for Ireland and 

the UK) and 12 (highest estimate for Germany) more cycles (with identical dynamics to those from Jan 

22nd) would be required to bring the total population to probable herd immunity levels (we assume herd 

immunity of 60%, Figure 2B). We plot this fall in susceptibility state S (increase in immunity) over time, 

from the initial size S0 in figure 2C for the ODE and HMM models separately for Ireland and the UK 

(Figure 2C). 

 

 
Figure 2: A) lower bound on log model evidence given by variational free energy (Log Bayes Factor) for 

different models across countries. This shows that the models with a prior of 1 million S0 outperform 

the (multiple outbreak ODE_Cities) model, with priors of initial susceptible S0 equal to the total 

population of the country.  B) From the two better performing models, we report the percent of the 

country's total population that are initially susceptible. We also plot the Bayesian parameter average 

of this percent, across all countries and models (6.4%).  C) From the ODE model, we replot the fall in 
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the susceptible population for Ireland and the UK as the dynamics of the current wave unfold. At the 

end of this wave large percentages of the population remain susceptible. The projections under the 

HHM are more pessimistic because the effective population size at the start of the first outbreak (i.e., 

susceptible population) is smaller (and more precise). 

 

 

Our model inversion procedure produced fits to the data that recapitulated the rates up to April 5th for 

both models (Figure 3). Systematic differences in future predictions were observed however between the 

ODE and HMM models (though predictions were of similar orders of magnitude). For all countries the 

peak date and peak number of cases was higher for the ODE model. However, both models exhibited 

peaks for dates in the past for four countries (Italy, Spain, Germany and Switzerland). For France the 

models were discrepant with the ODE model predicted a peak in the future on April 20th and the HMM 

model estimating a peak had already occurred on April 7th.  

 

Peaks in the future were expected for Ireland and the UK. For Ireland, the peak reported case rate 

predictions were estimated at April 9th for the HMM and April 23rd for the ODE. The estimate of the 

number of daily cases at the peak were 720 cases and 392 cases for the ODE and HMM models. For the 

UK, the peak case rate predictions were estimated at April 11th for the HMM and April 17th for the ODE 

model. The peak case rates (i.e. tested cases) were estimated at 9304 daily cases for the ODE and 5411 

daily cases for the HMM models (Figure 3).  

 
Figure 3: Model predictions of daily reported case rates across countries. Note both models assume 

that many infected individuals will not be tested or reported in the daily case rates.  
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The cumulative deaths (Figure 4) evinced relatively small discrepancies between the models, with the 

ODE model predicting a larger cumulative death toll, of 1250 for Ireland compared with 1008 deaths in 

Ireland given by the HMM model. For the UK the ODE and HMM were remarkably consistent, predicting a 

cumulative death toll of 49296 and 49785, respectively1 (Figure 4). In other European countries, however, 

the discrepancies between the model predictions were greater in some countries such as France, Spain 

and Switzerland, with the HMM suggesting considerably lower cumulative deaths. 

 

 
Figure 4: Model predictions of cumulative deaths across countries. 

 

Finally, to test the assumption that low S0 proportions of the population may be indicative of a ‘next 

wave’ or several ‘next waves’, we estimated the initial susceptible size from the initial peak of the 

Spanish Flu pandemic of 1918-1919. Using data collated from approximately half of the United Kingdom: 

i.e. a population of approximately 22 million. Using the HMM model and variational Laplace, we see fits 

to the data that capture the falling peak. Here, we estimated the effective or susceptible population size 

was S0 = 4.03% of the total population size (Figure 5). Though dramatically different in terms of hospital 

care—the general picture remains - that large waves may be possible after low S0. 

 

 

 
1 These predictions fall to substantially lower levels, when empirical priors from a hierarchical or parametric 
empirical Bayes analysis that incorporates data from all countries are used. 
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Figure 5. Spanish Flu Pandemic of 1918-1919 from regions of 

England and Wales. Initial S0 estimates from the first peak 

have a similar size (S0 Spanish Flu = 4.03%) to those 

estimated for the current coronavirus pandemic (S0 Corona 

= 6.4%). 

 

 

 

 

 

 

 

Discussion 

We used a variational Bayesian scheme (Friston, Mattout et al. 2007) to optimise the parameters of two 

distinctly constructed models of viral transmission (Friston, Parr et al. 2020, Moghadas, Shoukat et al. 

2020). We optimised the parameters of these models based on daily reported cases and daily reports of 

death due to Covid-19. We optimised the model from data acquired for seven European countries. Both 

models were able to predict (i.e. fit) the current epidemic dynamics with plausible estimated trajectories. 

The models differed in their exact case rate predictions but predicted commensurate figures for the 

deaths in the United Kingdom and Ireland. How do these estimates relate to previous predictions of 

Covid-19 deaths in the UK? It was predicted (Ferguson, Laydon et al. 2020) that without interventions 

510,000 deaths could occur, in the UK due to Covid-19. This analysis (Ferguson, Laydon et al. 2020) also 

predicted, that even with an optimal mitigation scenario, these death rates would reduce only by one 

half i.e. to 255,000. Thus, the predicted death cases of our models ~50,000 in the current cycle are in line 

with the predictions of mitigation effects, if we assume that several more cycles are possible.  

 

Importantly, both models predicted that we are currently nearing or past the peak of daily case rates in 

all seven countries. However, the estimates suggest that after this cycle more than 80% of each country's 

total population in all countries studied remain susceptible. Therefore, we assume that future cycles will 

occur. 

 

The predicted S0 was higher for the ODE model relative to the HMM model: in turn, the ODE model 

predicted a more prolonged cycle in the current period relative to the HMM model. This speaks to a 

trade-off between S0 and cycle times. Assuming herd immunity requires 60% of the susceptible 

population to be immune (Cohen and Kupferschmidt 2020), where 60%—one may conclude that further 
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cycles are possible. However, that is not to say that populations within current outbreak areas may not 

reach herd immunity after the current cycle. Yet, if this is the case (immunity is clustered in geographic or 

some other organisation of communities), then parts of the country—particularly those communities 

with high contact numbers that have not ‘been involved’ in the current cycle may be more likely to 

participate in future cycles. And while it is obviously unrealistic to suppose that an additive linear effect 

of populations will emerge (Sirakoulis, Karafyllidis et al. 2000, Eubank, Guclu et al. 2004)  (i.e., identically 

shaped cycles), given the complexity of contacts and population movement, our analysis may offer a 

rough guide to cycle immunity numbers.  

 

As with most scientific research at this time, the modelling described above was conducted with haste. In 

line with the sentiments of the World Health Organization’s Dr Mike Ryan ’Perfection is the enemy of the 

good when it comes to emergency management. Speed trumps perfection. And the problem in society we 

have at the moment is everyone is afraid of making a mistake. Everyone is afraid of the consequence of 

error, but the greatest error is not to move, the greatest error is to be paralyzed by the fear of failure.’ 1  

Therefore, we are grateful to the coding repositories listed below, where interested researchers can 

reproduce or nuance our analyses.    

 

 

Code Availability 

For code and data see: https://github.com/RosalynMoran/Covid-19.git 
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ODE FLOW FUNCTION  
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% States 
  
S               = x(1); % susceptible 
E               = x(2);% exposed 
I_NH        = x(3); % infected will not require hospitalization 
I_NH_SI   = x(4); % infected will not require hospitalization – socially isolated 
I_RH         = x(5);  % infected will Require Hospitalization 
I_RH_SI    = x(6);  % infected will Require Hospitalization – socially isolated 
I_SC          = x(7);% infected asymotmatic - Sub Clinical 
I_SC_SI    = x(8);% infected asymotmatic - Sub Clinical – socially isolated 
I_H           = x(9); % Hospitalized NOT n ICU 
I_ICU        = x(10); % Hospitalized in the ICU 
R               = x(11); % recovered 
D              = x(12); % deaths 
 
% Parameters  
 

N0             =   (exp(P.N))*1e6; 
beta          =  (0.09*exp(P.beta))*(10*exp(P.k));        %   beta x contacts   
betaSI       =  (0.09*exp(P.beta))*(2*exp(P.k_SI));      % contacts in isolation 
gamma     =  (1/4.6)*exp(P.gamma);                            % recovery rate = 1/days_infection 4.6 from pnas, 3 or 7 from lancet 
 
kappa     = (1/5.2)*exp(P.kappa);  % latency rate 1/(days incubation) - assume 5.2 days 
alpha      =  (1/2)*exp(P.alpha);     % reduced transmission rate for subclinical cases - a prior one quarter PNAS - one half 
alpha      =  min([alpha 0.5]); 
 
p_clin    =   (1/4)*exp(P.p);      % proportion of cases that are symptomatic - that may or may not need hospitalization 
p_clin    = min([p_clin 0.5]); 
 
delta     =  (1/7)*exp(P.delta);  % 1/average time from symptom onset to hospitalization 
 
 
h       =   (1/2)*exp(P.h) ;% proportion of clinical cases requiring hospital or ICU 
h       =   min([h 0.5]); 
 
c       = (1/10)*exp(P.c);   % proportion in hospital requiring ICU- estimate 10% -PNAS 1/100 
c       = min([c 0.75]); 
 
mh     = 0.02*exp(P.mh); % weight of death rate among non ICU 
mh     = min([mh 0.5]); 
 
muh    = (1/9.7)*exp(P.muh)  ;  % 1/average days from hospitalized non-ICU deaths 
phih   = (1/10)*exp(P.phih); % length of hospital stay before recovery 
 
mc   =   0.13*exp(P.mc) ; % weight of death rate among  ICU 
mc   =   min([mc 0.75]); 
 
muc  =   (1/7)*exp(P.muc)  ; % 1/average days from hospitalized ICU to deaths 
phic =   (1/14)*exp(P.phic) ;  % length of ICU stay before reocvery 
 
q    = 0.05*exp(P.q); 
q    = min([q 1]); 
 
fi   = 0.8*exp(P.fi); 
fi   = min([fi 1]); 
 
taui = 1*exp(P.taui); 
fa   = 0.05*exp(P.fa); 
fa   =  min([fa 1]); 
 
taua =  (1/2)*exp(P.taua); 
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%- Dynamics 
 
dS_dt       =  -beta*(S/N0)*(I_NH + I_RH) - alpha*beta*(S/N0)*I_SC... 
    -betaSI*(S/N0)*(I_NH_SI + I_RH_SI) - alpha*betaSI*(S/N0)*I_SC_SI; 
 
dE_dt       =  beta*(S/N0)*(I_NH + I_RH)  + alpha*beta*(S/N0)*I_SC ... 
    + beta*(S/N0)*(I_NH_SI + I_RH_SI) + alpha*beta*(S/N0)*I_SC_SI- kappa*E; 
 
dI_NH_dt    =  p_clin*(1-q)*(1-h)*kappa*E  -  (1-fi)*gamma*I_NH - (fi)*taui*I_NH; 
dI_NH_SI_dt    =  p_clin*q*(1-h)*kappa*E  -  gamma*I_NH_SI +  (fi)*taui*I_NH; 
 
dI_RH_dt     =  p_clin*(1-q)*(h)*kappa*E    -  (1-fi)*delta*I_RH - fi*taui*I_RH; 
dI_RH_SI_dt     =  p_clin*q*(h)*kappa*E    -  delta*I_RH_SI + fi*taui*I_RH; 
 
dI_SC_dt    = (1-p_clin)*kappa*E     - (1-fa)*gamma*I_SC - (fa)*taua*I_SC; 
dI_SC_SI_dt    = (fa)*taua*I_SC     - gamma*I_SC_SI; 
 
dH_dt       =  (1-c)*(1-fi)*delta*I_RH +  (1-c)*delta*I_RH_SI  - (mh*muh + (1-mh)*phih)*I_H;   % 
dICU_dt     =  c*(1-fi)*delta*I_RH + c*delta*I_RH_SI      - (mc*muc + (1-mc)*phic)*I_ICU; % 
 
 
dR_dt    =  gamma*(I_SC +  I_NH + I_SC_SI +  I_NH_SI) +  (1-mh)*phih*I_H  + (1-mc)*phic*I_ICU; 
dD_dt    =  mh*muh*I_H + mc*muc*I_ICU ; 
 
 
 
%% 
 
ODE Observer FUNCTION  

 
cases  =    prop_asymp*(x(7) +x(8))  +   prop_sympNH*(x(3)+x(4)) +  x(5) + x(6); % twenty percent of Symptomatic not 
hospitalised cases tested one percent of Asymptomatic tested 
 
deaths =  x(12); 
 
prop_asymp  = 0.01*exp(P.cases_from_SC); 
prop_sympNH = 0.2*exp(P.cases_from_NH); 
prop_asymp  =  min([prop_asymp, 1]); 
prop_sympNH =  min([prop_sympNH, 1]); 
 
 
 
ODE CITY Observer FUNCTION  

 
 
cases  =   P.no_cities*(prop_asymp*(x(7) +x(8))  +   prop_sympNH*(x(3)+x(4)) +  x(5) + x(6)); % twenty percent of 
Symptomatic not hospitalised cases tested one percent of Asymptomatic tested 
 
deaths =  P.no_cities*x(12); 
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