Por favor, use este identificador para citar o enlazar este ítem: http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/1851
Bayesian Adaptive Clinical Trials for Anti-Infective Therapeutics during Epidemic Outbreaks
Qingyang Xu.
Shomesh Chaudhuri.
Danying Xiao.
Andrew W Lo.
Acceso Abierto
Atribución-NoComercial-SinDerivadas
10.1101/2020.04.09.20059634
In the midst of epidemics such as COVID-19, therapeutic candidates are unlikely to be able to complete the usual multi-year clinical trial and regulatory approval process within the course of an outbreak. We apply a Bayesian adaptive patient-centered model---which minimizes the expected harm of false positives and false negatives---to optimize the clinical trial development path during such outbreaks. When the epidemic is more infectious and fatal, the Bayesian-optimal sample size in the clinical trial is lower and the optimal statistical significance level is higher. For COVID-19 (assuming a static R0=2 and initial infection percentage of 0.1%), the optimal significance level is 7.1% for a clinical trial of a non-vaccine anti-infective therapeutic clinical trial and 13.6% for that of a vaccine. For a dynamic R0 ranging from 2 to 4, the corresponding values are 14.4% and 26.4%, respectively. Our results illustrate the importance of adapting the clinical trial design and the regulatory approval process to the specific parameters and stage of the epidemic.
www.medrxiv.org
2020
Artículo
https://www.medrxiv.org/content/10.1101/2020.04.09.20059634v1.full.pdf
Inglés
VIRUS RESPIRATORIOS
Aparece en las colecciones: Artículos científicos

Cargar archivos:


Fichero Tamaño Formato  
1100788.pdf575.82 kBAdobe PDFVisualizar/Abrir