Por favor, use este identificador para citar o enlazar este ítem:
http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/1851
Bayesian Adaptive Clinical Trials for Anti-Infective Therapeutics during Epidemic Outbreaks | |
Qingyang Xu. Shomesh Chaudhuri. Danying Xiao. Andrew W Lo. | |
Acceso Abierto | |
Atribución-NoComercial-SinDerivadas | |
10.1101/2020.04.09.20059634 | |
In the midst of epidemics such as COVID-19, therapeutic candidates are unlikely to be able to complete the usual multi-year clinical trial and regulatory approval process within the course of an outbreak. We apply a Bayesian adaptive patient-centered model---which minimizes the expected harm of false positives and false negatives---to optimize the clinical trial development path during such outbreaks. When the epidemic is more infectious and fatal, the Bayesian-optimal sample size in the clinical trial is lower and the optimal statistical significance level is higher. For COVID-19 (assuming a static R0=2 and initial infection percentage of 0.1%), the optimal significance level is 7.1% for a clinical trial of a non-vaccine anti-infective therapeutic clinical trial and 13.6% for that of a vaccine. For a dynamic R0 ranging from 2 to 4, the corresponding values are 14.4% and 26.4%, respectively. Our results illustrate the importance of adapting the clinical trial design and the regulatory approval process to the specific parameters and stage of the epidemic. | |
www.medrxiv.org | |
2020 | |
Artículo | |
https://www.medrxiv.org/content/10.1101/2020.04.09.20059634v1.full.pdf | |
Inglés | |
VIRUS RESPIRATORIOS | |
Aparece en las colecciones: | Artículos científicos |
Cargar archivos:
Fichero | Tamaño | Formato | |
---|---|---|---|
1100788.pdf | 575.82 kB | Adobe PDF | Visualizar/Abrir |