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Abstract	
	
In the midst of epidemics such as COVID-19, therapeutic candidates are unlikely to be able 
to complete the usual multi-year clinical trial and regulatory approval process within the 
course of an outbreak. We apply a Bayesian adaptive patient-centered model—which 
minimizes the expected harm of false positives and false negatives—to optimize the clinical 
trial development path during such outbreaks. When the epidemic is more infectious and 
fatal, the Bayesian-optimal sample size in the clinical trial is lower and the optimal statistical 
significance level is higher. For COVID-19 (assuming a static 𝑅 2 and initial infection 
percentage of 0.1%), the optimal significance level is 7.1% for a clinical trial of a non-vaccine 
anti-infective therapeutic clinical trial and 13.6% for that of a vaccine. For a dynamic 𝑅  
ranging from 2 to 4, the corresponding values are 14.4% and 26.4%, respectively.  Our 
results illustrate the importance of adapting the clinical trial design and the regulatory 
approval process to the specific parameters and stage of the epidemic.
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1	 Introduction	

With growing public concern over the outbreak of Coronavirus Disease 2019 (COVID-19), 
significant efforts have been undertaken by global biomedical stakeholders to develop 
effective diagnostics, vaccines, anti-viral drugs, medical devices, and other therapeutics 
against this highly infectious and deadly pandemic. While in the past, the traditional 
randomized clinical trial (RCT) and regulatory approval process often took several years (U.S. 
Food & Drug Administration, 2018)—longer than the typical duration of an epidemic 
outbreak (Pronker et	al. 2013)—recently the FDA has responded with actions such as the 
Breakthrough Devices Program, Emergency Use Authorization (EUA) authority, and 
Immediately in Effect guidance documents to prevent novel diagnostics and therapeutics 
from lagging behind the urgent needs of the population. In this paper, we propose adapting 
yet another tool that the FDA has already been exploring for medical devices (Chaudhuri et 
al. 2018, 2019) to therapeutics for treating COVID-19 that are currently under development. 

In recent years, Bayesian adaptive RCT protocols have been increasingly used to expedite 
the clinical trial process of potentially transformative therapies for diseases with high 
mortality rates (Berry, 2015). Currently, these protocols have mainly been applied within 
the oncology domain, such as I-SPY for breast cancer (Barker et al., 2009) and GBM AGILE 
for glioblastoma (Alexander et	al. 2018). These studies use Bayesian inference algorithms to 
greatly reduce the number of patients needed to assess the therapeutic effects of a drug 
candidate, without lowering the statistical power of the final approval decision, as measured 
by Type I and II error rates. As a result, therapeutic candidates can progress more quickly 
through the regulatory process and reach patients faster and at lower cost. 

For severe diseases with no curative treatments, such as pancreatic cancer, patients tend to 
tolerate a higher Type I error of accepting an ineffective therapy in exchange for a lower Type 
II error of rejecting an effective therapy as well as expedited approvals of potentially 
effective treatments. Based on this observation, a patient-centered Bayesian protocol was 
proposed (Isakov	et	al., 2018; Montazerhodjat et	al., 2017) that incorporates patient values 
into clinical trial design and identify the optimal balance between the possibilities of false 
positives (Type I error) and false negatives (Type II error). For more severe diseases, this 
protocol sets a tolerated Type I error rate much larger than the traditional 5% threshold, 
which leads to higher rates of approvals and expedited approval decisions. 

However, the original Bayesian adaptive RCT framework does not take into account patient 
risk preferences. To address this gap, Chaudhuri and Lo (2018) developed an adaptive 
version of the Bayesian patient-centered model that achieves an optimal balance between 
Type I and Type II error rates, significantly reducing the number of subjects needed in trials 
to achieve a statistically significant conclusion. A key feature of this model is the time 
evolution of the loss function of the Bayesian decision algorithm. This mechanism favors the 
expedited approval of diagnostic or therapeutic candidates that show early positive effects, 
since patients place a lower value on delayed approval of an effective diagnostic or therapy. 

There is a natural but subtle analog to this dilemma in the case of therapeutics for an 
infectious disease during the course of an epidemic outbreak. Approving an effective 
therapeutic early will prevent future infections and deaths, while approving it later will save 
fewer people from infection. On the other hand, approving an ineffective therapeutic early 
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will not prevent any future casualties. Worse still, it may prevent people from taking 
adequate precautions against infection, since they will falsely believe that they are safe from 
the disease after the advent of the ineffective therapy. 

Moreover, the cost of Type I versus Type II error can differ from therapy to therapy. A novel 
vaccine that could trigger a significant immune response such as a cytokine storm has a much 
higher cost of a Type I error than a medical device such as an air filtration system designed 
to destroy virions through intense ultraviolet light. Therefore, the appropriate statistical 
threshold for approval should depend on the specific therapy, as well as the circumstances 
of the current burden of disease. 

In this article, we apply the Bayesian adaptive protocol to anti-infective therapeutic 
development using a loss function that evolves over the course of an epidemic outbreak. We 
achieve an optimal balance between Type I and Type II errors for therapeutics that treat 
infectious diseases and identify the optimal time to reach the approval decision based on the 
accumulation of clinical evidence. Our results show that when the epidemic is more 
infectious, the necessary sample size of the RCT decreases, while the tolerable Type I error 
increases. This confirms our earlier intuition that potentially effective therapies that are 
known to be safe should receive expedited approval when an epidemic is spreading rapidly. 

2	 Multi‐Group	SEIR	Epidemic	Model	

The starting point for our analysis is the Susceptible-Exposure-Infective-Removed (SEIR)  
epidemic model, which has been applied to model the outbreak of COVID-19 in China in a 
number of recent studies (Yang et al. 2020; Wu et	al. 2020). The population of N subjects is 
partitioned into four distinct groups: susceptible (S), exposed (E), infectious (I), and 
removed (R). The time evolution of the epidemic is specified by the following group of 
ordinary differential equations: 
 

 
𝑑𝑆
𝑑𝑡

𝛽𝑆𝐼,
𝑑𝐸
𝑑𝑡

𝛽𝑆𝐼 𝑎𝐸,
𝑑𝐼
𝑑𝑡

𝑎𝐸 𝛾𝐼,
𝑑𝑅
𝑑𝑡

𝛾𝐼 . (1) 

 
Here we use the convention that 𝑆 𝑡 , 𝐸 𝑡 , 𝐼 𝑡 , and 𝑅 𝑡  are the proportions of the 
susceptible, exposed, infectious and removed populations, respectively, satisfying the 
conservation constraint for all 𝑡: 
 

 𝑆 𝑡 𝐸 𝑡 𝐼 𝑡  𝑅 𝑡 100% . (2) 
 
The parameters 𝛽, 𝑎, and 𝛾 denote the average rates of infection, incubation and recovery, 
respectively, and 𝜇 ∈ 0%, 100%  denotes the mortality rate of the epidemic. For example, 
if 𝜇 5%, we expect 5% of infected subjects will die from the disease. At time 𝑡, 𝜇𝑅 𝑡 𝑁 
subjects will have died, and 1 𝜇 𝑅 𝑡 𝑁 will have recovered. 

A critical measure of the infectivity of an epidemic is its basic reproduction number, defined 
as 𝑅 𝛽/𝛾 in the SEIR model. This is the expected number of secondary infections caused 
by each infected subject in a population with no public health measures (such as quarantine, 
social-distancing, or vaccination).  
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A number of studies have used different statistical schemes to estimate 𝑅  for COVID-19 
during its initial outbreak period in central China in January 2020. These estimated values of 
𝑅  range from 2.2 (95% CI, 1.4 to 3.9) (Li et	al., 2020) to 3.58 (95% CI, 2.89 to 4.39) (Zhao et	
al., 2020). Given the large uncertainty in the value of 𝑅 , we simulate therapeutic 
development under scenarios with constant 𝑅  values of 2 and 4. 

In addition, to model the impact of governmental nonpharmaceutical interventions (NPIs) 
on containing the spread of the epidemic, we consider a dynamic transmission SEIR model 
where the infection rate 𝛽 𝑡   monotonically decreases in time as a result of the NPI. 
Specifically, we assume that 𝛽 𝑡  takes the sigmoid functional form: 

 

𝛽 𝑡
𝛽 𝛽∞

1 exp 𝑡 𝑡
𝜏

𝛽∞  . (3) 

 
Here 𝛽  and 𝛽  denote the infection rates in the initial and final stages of the epidemic (with 
𝛽 𝛽 ),  respectively, 𝑡  denotes the half-life of the decay in infection rate, and 𝜏 the length of 
the time window when this decay occurred. A larger difference 𝛽 𝛽   corresponds to more 
significant reduction of epidemic transmission, a smaller value of 𝑡  corresponds to a speedier 
decision to enforce the NPI, and a smaller value of 𝜏 corresponds to more strict enforcement of 
the NPI since 𝛽 𝑡   decays more rapidly. We calibrate the values 𝛽 3  and 𝛽 1.5  based on 
the estimates of the dynamic transmission rate of COVID-19 in Wuhan, China from December 
2019 to February 2020 (Kucharski et	al., 2020). We consider different values of 𝑡  and 𝜏 to reflect 
the variability in timing and stringency of NPIs enforced by governments around the globe. 

To model the significant variability in mortality rates of COVID-19 for patients in different 
age groups, we extend this basic model to a multi-group SEIR model, where the population 
is partitioned into five age groups, (1) below 49, (2) 50 to 59, (3) 60 to 69, (4) 70 to 79, and 
(5) above 80. We use 𝑆 , 𝐸 , 𝐼 , and 𝑅 	to denote the corresponding type in each group (and 
continue to use 𝑆, 𝐸, 𝐼, and 𝑅  for the total proportion of each type in all groups). The 
dynamics of the epidemic are specified by the modified ordinary differential equations: 

 

 
𝑑𝑆
𝑑𝑡

𝛽𝑐 𝑆 𝐼      
𝑑𝐸
𝑑𝑡

𝛽𝑐 𝑆 𝐼 𝑎𝐸        
𝑑𝐼
𝑑𝑡

𝑎𝐸 𝛾𝐼       
𝑑𝑅
𝑑𝑡

𝛾𝐼 	 (4) 

 
Here 𝑐  denotes the contact rate of the susceptible subjects in the 𝑖th age group with the total 
infected population 𝐼 of all groups. This contact rate is measured relative to group 1, which 
we normalize to 𝑐 1. In the case of COVID-19, although the mortality rate is much higher 
for senior populations (Onder et	 al., 2020), the elderly also tends to have less frequent 
contact with the infected population outside the household (Walker et	al., 2020). 

We solve the differential equations in the multi-group SEIR model using the ODE45 solver in 
MATLAB 2019a with initial conditions for each age group: 

 
𝑆 0 , 𝐸 0  , 𝐼 0 , 𝑅 0   1 1 𝑟 𝐼 , 𝑟 𝐼 , 𝐼 , 0 𝑃  
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The parameter 𝐼  denotes the proportion of the initially infected population, 𝑟  is the ratio of 
initially exposed and infected subjects, and 𝑃  is the percentage of the 𝑖th age group in the 
population. The assumed demographic, contact rate, and mortality rate values are 
summarized in Table 2. 

3	 A	Bayesian	Patient‐Centered	Approval	Process 

Similar to Chaudhuri and Lo (2018), we develop a Bayesian patient-centered decision model 
for RCT approval which minimizes the expected loss (or harm) incurred on the patients by 
optimally balancing the losses of Type I and Type II errors. Here the loss does not refer to 
financial costs afforded by the patients, but rather the loss in patient value (i.e. how much 
patients weigh the relative harms of infection and death). We assign the losses per patient of 
being susceptible, infected, and deceased. Since Bayesian decision thresholds are invariant 
under the rescaling of the losses, we normalize by setting the loss per patient infection 𝐿
1 . We then assign the loss per patient death relative to 𝐿  as 𝐿 , and the loss due to 
susceptibility to the disease as 𝐿 .   The parameter values we assume, summarized in Table 
1, are meant to represent one reasonable valuation of the relative losses. However, in 
practice patient value will differ from one patient group another, especially given the large 
variability of mortality rate of COVID-19 in different age groups (Onder et	al., 2020). Here 
we report the main results of optimal sample size and statistical significance (Table 3 and 4) 
assuming 𝐿 100. The results for 𝐿 10 are provided in Supplementary Materials. 

We simulate the multi-group SEIR model over a time period of 𝑇 weeks, where 𝑇 is the 
duration of the epidemic outbreak. Let 𝜅 denote the weekly subject enrollment rate in each 
arm of the clinical trial. We assume that the value of 𝑅  is known (or well-estimated) at initial 
time 𝑡 0 and stays constant during the course of the outbreak. At time 𝑡 ∈ 0, 𝑇 , the 
Bayesian loss C t  of choosing the action 𝐻 𝑖 under 𝐻 𝑗 is defined as:  

 
 𝐻 0 do not approve 	 𝐻 1 approve 	

𝐻 0 
(no effect)  0 𝑆 𝑡 𝑆 𝑇 𝑁𝐿 	

𝐻 1 
(effective) 

 
𝑅 𝑇 𝑁 L 𝜇L  

	
𝐶𝐼 𝑡 𝑁L 𝜇𝑅 𝑡 𝑁L  

 
where we define the cumulative number of infected patients 𝐶𝐼 𝑡  until time t: 
  

 𝐶𝐼 𝑡 𝐸 𝑡 𝐼 𝑡 𝑅 𝑡  . (5) 
 

By design, this loss function penalizes Type I errors early in the epidemic by the susceptible 
term, 𝑆 𝑡 𝑆 𝑇 𝑁𝐿 . We subtract the base level 𝑆 𝑇  from 𝑆 𝑡  since the multi-group 
SEIR model predicts that 𝑆 𝑇 𝑁 subjects will not be infected by the epidemic.  A Type I error 
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at an earlier time will expose more currently susceptible population to the epidemic, since 
they will falsely believe that they are safe from the disease after the advent of the ineffective 
therapeutic. On the other hand, the loss function also penalizes correct approval decisions 
made at later stages of an epidemic via to the cumulative infected and death terms, 𝐶𝐼 𝑡  and 
𝜇𝑅 𝑡 . A correct but delayed approval decision for the therapeutic is less valuable since it 
will save fewer susceptible people from infection and death. 

The Bayesian decision model considers the null hypothesis 𝐻 0 that the anti-infective 
therapeutic (or vaccine) has no clinical effect, against the alternative hypothesis that it has 
positive clinical effect with signal-to-noise ratio 𝜌 (Chaudhuri and Lo, 2018). We use 𝑝 and 
𝑝  to denote the Bayesian prior probabilities of 𝐻 0 and 𝐻 1, respectively.  

This patient-value model imposes higher losses for incorrect approvals at earlier stages and 
correct approvals at later stages of an epidemic. Under these constraints, the Bayesian 
decision algorithm yields the sample size and statistical significance threshold of the RCT 
that optimally balances Type I and Type II error. 

4	 Results 

We simulate an epidemic outbreak over a time period of 𝑇 weeks, where 𝑇 is the duration of 
the outbreak. For an epidemic with higher infectivity, its duration is shorter, which puts 
more pressure to reach a timely approval decision. To avoid numerical instability, we 
formally define 𝑇 as the first time when the number of cumulative infected patients reaches 
99.9% of total infections predicted by the SEIR model. We assume an age-specific mortality 
rate 𝜇 at the level of COVID-19 (Onder et	al. 2020; World Health Organization, 2020), and 
incubation and recovery periods of 7 days each (Yang et	 al. 2020). These estimated 
parameters can all be challenged to varying degrees, depending on the specific drug-
indication pair under consideration and the particular circumstances of the epidemic, but 
they are meant to be representative for a typical anti-infective therapeutic during the midst 
of a growing epidemic. 

We also assume that it takes 7 days after injection to assess the efficacy of the therapeutic on 
each subject. We adopt the optimization scheme of Montazerhodjat et	al. (2017) to find the 
optimal Type I and Type II error rates of the non-adaptive Bayesian RCT. To represent typical 
practice of the pharmaceutical industry, we optimize under the upper bound on the model’s 
power Power 90% (Isakov et	al.	2019). We then use these optimal error rates as our 
stopping criteria to simulate the sequential decision process of a Bayesian adaptive RCT via 
Monte Carlo simulation (Chaudhuri and Lo, 2018). The simulation results are summarized 
in Table 3. 

We separate the results into two distinct types of therapeutics—non-vaccine anti-infectives 
and vaccines—because of the differences in their historical probabilities of success. Vaccine 
development programs have an estimated PoS of 40% as of 2019Q4 
(https://projectalpha.mit.edu) whereas the corresponding figure for non-vaccine anti-
infectives is 23% (Wong et al., 2020). 
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4.1	Non‐Vaccine	Anti‐Infective	Therapeutics	

Static	Transmission	Rate	

We first analyze the case when the infectivity 𝑅  remains constant in time (e.g. in the absence 
of effective NPIs). For the fixed-sample Bayesian RCT on a non-vaccine anti-infective 
therapeutic, as 𝑅  increases from 2 to 4 (Rows 1 to 2 of Table 3), the optimal sample size of 
each experimental arm decreases from 242 to 152 and the optimal Type I error rate 
drastically increases from 7.1% to 17.3% (Figure 1), much higher than the traditional 5% 
threshold. As the epidemic spreads across the population more rapidly, the Bayesian RCT 
model has greater pressure to expedite the approval process and a much higher tolerance of 
false positive outcomes.  

For the Bayesian adaptive RCT, when the therapeutic is ineffective (𝐻 0), the average 
sample size required to reject the therapeutic is much smaller than that of the non-adaptive 
version (Columns 7 and 8 of Table 3). Also, the required sample size decreases with the 
infectivity 𝑅  in both mean and quartiles, yet always achieves Type I error rate 𝛼 below that 
of the non-adaptive version (Column 11).  The adaptive Bayesian decision model is able to 
reject an ineffective therapeutic with a relatively small sample size and a bounded false-
positive rate.  

On the other hand, when the therapeutic is effective (𝐻 1), as 𝑅  increases from 2 to 4, the 
average sample size required by the Bayesian adaptive RCT decreases from 148 to 78 
(Columns 9 and 10 of Table 3). The Bayesian adaptive model places more weight on 
approving an effective therapeutic earlier to prevent future infections when the epidemic is 
more infectious. Despite the smaller sample size, the model still retains an empirical power 
above 91.0% for all values of 𝑅  (Column 12). The Bayesian adaptive model simultaneously 
expedites the approval of an effective therapeutic and retains a bounded false-negative rate. 
The results are illustrated in Figure 2. 

Furthermore, as the proportion of the initially infected population 𝐼  decreases from 0.1% to 
0.01% (Rows 4 to 6 of Table 3), the optimal sample sizes for non-adaptive and adaptive RCTs 
both increase, while the optimal Type I error rates decrease. Beginning the clinical trials for 
a therapeutic during the earlier stages of an epidemic outbreak reduces the need to expedite 
the approval process in order to contain its future spread. Clinicians and researchers have 
more time to evaluate the efficacy of a therapeutic and record adverse effects by testing it on 
a larger number of subjects, which leads to a lower Type I error rate. 

Finally, when the mortality rate 𝜇 increases from the level of COVID-19 (Onder et	al. 2020; 
World Health Organization, 2020), to the level of SARS (World Health Organization, 2003), 
and further to the level MERS (World Health Organization, 2019), the optimal sample sizes 
for both non-adaptive and adaptive Bayesian models decrease and the optimal Type I error 
rates increase (Rows 7 to 12 of Table 3). When the epidemic is more lethal, the Bayesian 
adaptive model requires fewer subjects in the RCT, since both Type I and Type II errors will 
lead to greater losses due to death by infection. The higher death tolls provides significantly 
more incentive in the Bayesian adaptive framework to approve the therapeutic in the hopes 
of saving more people from future infection and death. 
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One interesting feature of the Bayesian decision model is that the optimal Type I error rate 
is not a monotonic function 𝑅 , but rather has a global minimum of 8% at 𝑅 1.7 for 
COVID-19, as shown in Figure 1. As 𝑅  decreases below 1.7, the optimal Type I error rate 
increases. The intuition for this result that we define the loss of Type I error as the excess 
risk of being susceptible to infection 𝑆 𝑡 𝑆 𝑇 𝑁𝐿 , where 𝑆 𝑇  is the fraction of the 
population that remains uninfected throughout the epidemic outbreak. When 𝑅  is small, 
𝑆 𝑇  is close to 100% and the excess risk 𝑆 𝑡 𝑆 𝑇 𝑁𝐿  is small compared to the benefit 
of preventing future deaths. Therefore, when the epidemic is not very infectious, the 
Bayesian decision model expedites the approval decision. This also confirms the intuition 
that smaller sample sizes are required in adaptive trials for diseases that affect a small 
fraction of the population. If we instead define the loss of Type I error as the absolute risk of 
being susceptible 𝑆 𝑡 𝑁𝐿 , we find that the optimal Type I error indeed monotonically 
increases with 𝑅 , as shown in Figure 11 of Supplementary Materials. 

Dynamic	Transmission	Rate	

The results for the dynamic transmission model with 𝛽 3, 𝛽 1.5, 𝑡 3 weeks and 𝜏
1 week are summarized in Table 3. For COVID-19 (rows 3 and 6), we find that the Bayesian 
optimal sample size and Type I error rate of the dynamic transmission model lie in between 
the scenarios 𝑅 2  and 𝑅 4.  This suggests that timely and effective government 
interventions will protect more subjects from infection and allow more time for the RCT. 

However, for the more fatal SARS and MERS (rows 9 and 12), the dynamic transmission 
model sets higher optimal Type I error 𝛼 and smaller sample size than 𝑅 4. This is due to 
the U-shaped curve of optimal 𝛼 vs. 𝑅 , shown in Figure 1. When the NPI reduces 𝑅 𝑡  
below a certain threshold, the optimal 𝛼 starts to increase. For highly fatal epidemics, when 
the government adopts NPIs to protect most of the susceptible population from infection, 
the regulatory priority should be to expedite potentially effective treatments that can help 
current patients since the loss of Type I error is much lower than that of the Type II error. 

In addition, we investigate the impact of the timing and stringency of NPIs enforced by the 
government with different values of 𝑡  and 𝜏. The results are summarized in Table 5. We find 
that the optimal Type I error is larger for 𝑡 3 weeks than 𝑡 6 weeks. Therefore, if the 
government adopts well-enforced NPIs early on (such as the lockdown of Wuhan, China) to 
protect the susceptible population, this will reduce the loss associated with Type I error, 
leading to expedited approvals of potentially effective therapeutics. Furthermore, the sooner 
an effective therapeutic is approved, the sooner will NPIs be lifted. 

4.2		Vaccines	

We repeat the above analysis for RCT of vaccines using a prior probability of having an 
effective vaccine 𝑝 40% as reported at https://projectalpha.mit.edu for 2019Q4. The 
simulation results are summarized in Table 4. Overall, we observe the same pattern in the 
optimal sample size and Type I error rates on infectivity, mortality, and proportion of initial 
infections. However, since 𝑝  is higher for vaccines, the Bayesian decision model requires 
fewer subjects on average in the RCT to ascertain the positive effects of the vaccine, 
compared to the case of anti-infective therapeutics in Table 3. We find that vaccines should 
receive even more expedited evaluation. 
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To assess the robustness of our model’s predictions against the assumed values of model 
parameters, we perform a sensitivity analysis on the parameter values. The results are 
summarized in Supplementary Materials. 

5	 Discussion	

A natural consequence of using a patient-centered framework for determining the approval 
threshold is, of course, more false positives—and the potential for a greater number of 
patients with adverse side-effects—in cases where the burden of disease is high. These false 
positives can be addressed through more vigilant post-approval surveillance by regulatory 
agencies and greater requirements for drug and device companies to provide such patient-
level data to the regulator following approval. Failure to provide such data or evidence of an 
ineffective therapy can be grounds for revoking the approval. 

However, past experience shows that withdrawing an approved drug can be challenging and 
disruptive for several reasons (Onakpoya, Heneghan, and Aronson, 2016). Therefore, 
implementing the patient-centered approach may require creating a new category of 
temporary approvals for crisis situations involving urgent needs at national or international 
levels, similar to the FDA’s EUA program. Such a program might involve provisional approval 
of a candidate therapy consisting of a one- or two-year license—depending on the nature of 
the drug-indication pair—to market the therapy to a pre-specified patient population, no off-
label use of the therapy, and regular monitoring and data reporting to the regulator by the 
manufacturer and/or patients’ physicians during the licensing period (Lo, 2017). At the end 
of this trial period, one of two outcomes would occur, depending on the accumulated data 
during this period: (a) the “urgent needs” license expires; or (b) the license converts to the 
traditional regulatory license. Of course, at any point during the trial period, the regulator 
can terminate the license if the data show that the therapeutic is ineffective and/or unsafe.  

While such a process may impose greater burdens on patients, manufacturers, and 
regulators, it may still be worthwhile if it brings faster or greater relief to patients facing 
mortal illnesses and extreme suffering. In this respect, an urgent-needs program may be 
viewed as a middle ground between a standard clinical trial and an approval, similar in spirit 
to the adaptive designs of sophisticated clinical trials with master protocols such as I-SPY 2, 
LUNG-MAP, and GBM-AGILE, in which patient care and clinical investigations are 
simultaneously accomplished. Also, because the Centers for Medicare and Medicaid Services 
(CMS) has demonstrated a willingness to cover the cost of certain therapeutics for which 
evidence is still being generated (see, for example, CMS’s “coverage with evidence” programs 
listed at https://go.cms.gov/2v6ZxWm), additional economic incentives may be available to 
support such temporary licenses. 
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6	 Conclusion 

We apply the Bayesian adaptive patient-centered model of Chaudhuri and Lo (2018) to 
clinical trials for therapeutics that treat infectious diseases during an epidemic outbreak. 
Using a simple epidemiological model, we find that the optimal sample size in the clinical 
trial decreases with the infectivity of the epidemic, measured by the basic reproduction 
number 𝑅 . At the same time, the optimal Type I error rate increases with 𝑅 . Lower levels 
of initial infection increase the number of subjects required to verify the therapeutic efficacy 
of the therapeutic under investigation, while higher levels of mortality increase the optimal 
sample size. The results confirm our intuition that clinical trials should be expedited and a 
higher false positive rate should be tolerated when the epidemic spreads more rapidly 
through the population, has a higher mortality rate, and has already infected a sizable 
portion of the population at the beginning of the RCT. 

To provide transparency for how a patient-centered approach differs from the traditional 
statistical framework in the anti-infectives context, we used a relatively simple mathematical 
model of epidemic disease dynamics to estimate the societal loss in an outbreak. More 
sophisticated epidemiological models can easily be incorporated into our framework at the 
cost of computational tractability and transparency.  

One interesting trade-off to be explored is the difference between COVID-19 vaccine and an 
anti-viral treatment that can cure an infected patient. While prevention through vaccination 
is the ultimate solution, a successful treatment for the disease using repurposed drugs that 
have already been approved for other indications (and whose safety profile has already been 
established) may be even more valuable, especially if it can be deployed in the nearer term 
and reduce the growing fear and panic among the general population. In such cases, the 
approval threshold should clearly reflect these cost/benefit differences. 

Of course, in practice regulators consider many factors beyond p-values in making its 
decisions. However, that process is opaque even to industry insiders, and the role of patient 
preferences is unclear. The proposed patient-centered approach provides a systematic, 
objective, adaptive, and repeatable framework for explicitly incorporating patient 
preferences and burden-of-disease data in the therapeutic approval process. This 
framework also fulfills two mandates for the FDA, one from the fifth authorization of the 
Prescription Drug User Fee Act (PDUFA) for an enhanced quantitative approach to the 
benefit-risk assessment of new drugs (U.S FDA, 2013), and the other from Section 3002 of 
the 21st Century Cures Act of 2016 requiring the FDA to develop guidelines for patient-
focused drug development, which includes collecting patient preference and experience data 
and explicitly incorporating this information in the drug approval process. 

We hope this work will shed further insight into improving the current clinical trial process 
for infectious disease therapeutics and contribute to the timely development of effective 
treatments for COVID-19 patients in particular. 
  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 14, 2020. .https://doi.org/10.1101/2020.04.09.20059634doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.09.20059634
http://creativecommons.org/licenses/by/4.0/


8 April 2020 © 2020 by Xu, Chaudhuri, Xiao, and Lo Page 10 of 27 
All Rights Reserved 

Table	1.	Simulation	parameters	and	values.		
 

Parameter Description (Source) Value(s) 

𝑅 	 Basic reproduction number 
(Li et	al.	2020; Zhao et	al., 2020) 

2, 4 

a	
Incubation rate (per week)  
(Yang et	al. 2020) 1 

𝛾	 Recovery rate (per week)  
(Yang et	al. 2020) 1 

𝐼 	 Initial proportion of infected population 0.1%, 0.01% 
𝑟 	 Ratio of initially exposed and infected populations 10 

𝛽 , 𝛽 	 Initial and final infection rate in the dynamic 
transmission model (Kucharski et	al. 2020) [3, 1.5] 

𝑡 	 Half-life of decay in the dynamic model (week) 3, 6 
𝜏	 Window length of decay in the dynamic model (week) 0.5, 1 
N	 Population size (million) 300 
𝜅	 Weekly subject enrollment in each arm of RCT 100 

𝑝 	
Prior probability of having an ineffective anti-infective 
therapeutic (Wong et	al., 2019) 

77% 

𝑝  
Prior probability of having an ineffective vaccine 
(Wong et	al., 2019) 60% 

∆𝑡  Time needed to assess the efficacy of the treatment 
(week) 1 

𝜌	 Signal to noise ratio (𝛿/𝜎) of treatment effect 
(Chaudhuri and Lo, 2018) 0.25 

Power  
Maximum power of Bayesian decision model 
(Isakov et	al., 2019) 

0.9 

𝐿  Loss per capita from death by infection 10, 100 
𝐿  Loss per capita from being infected 1 

𝐿  
Loss per capita from being susceptible without 
precaution 

0.2 
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Table	2.	Demographic	(US	Census	Bureau,	2018),	relative	contact	rate	(Walker	et	al.	
2020)	and	mortality	(Onder	et	al.	2020;	World	Health	Organization	2003;	2019;	2020)	
profile	of	various	age	groups	for	COVID‐19,	SARS	and	MERS.		
 
 

Age Group Percentage of US 
Population 𝑃  Contact Rate 𝑐  Disease Mortality 𝜇  

Below 49 64% 1 
COVID-19 0.3% 

SARS 3% 
MERS 15% 

50 – 59 13% 0.83 
COVID-19 1.3% 

SARS 10% 
MERS 30% 

60 – 69 12% 0.66 
COVID-19 3.6% 

SARS 17.6% 
MERS 35% 

70 – 79 7% 0.5 
COVID-19 8% 

SARS 28% 
MERS 45% 

Above 80 4% 0.42 
COVID-19 14.8% 

SARS 26.3% 
MERS 40% 
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Table	3.	Simulation	results	of	a	Bayesian	adaptive	RCT	on	non‐vaccine	anti‐infective	therapeutics	obtained	from	10,000	
Monte	Carlo	runs	and	assuming	𝑳𝑫 𝟏𝟎𝟎.	𝑹𝟎	denotes	the	basic	reproduction	number,	µ	the	disease	morality,	and	𝑰𝟎	
the	proportion	of	initial	infected	subjects.	Sample	size	refers	to	the	number	of	subjects	enrolled	in	each	arm	of	the	RCT.	
SD	denotes	standard	deviation,	and	IQR	the	interquartile	range	about	the	median.	𝑹𝟎(t)	denotes	the	use	of	a	dynamic	
transmission	model	with	half‐life	𝒕𝟐 𝟑	weeks	and	window	length	𝝉 𝟏	week.	

Epidemic Parameters Non-Adaptive 
Adaptive (100,000 Monte Carlo Runs) 

Sample Size (H=0) Sample Size (H=1) 
𝛼 % Power % 

𝑅  µ	 𝐼  Sample 
Size 𝛼 % Power % Mean 

(SD) 
Median 
(IQR) 

Mean 
(SD) 

Median 
(IQR) 

2 COVID-19 0.1% 242 7.1 90 
135 

(103) 
105 

(63, 176) 
148 

(107) 
119 

(73, 192) 5.8 91.5 

4 COVID-19 0.1% 158 17.3 90 
115 
(83) 

91 
(56, 149) 

98 
(80) 

74 
(42, 128) 14.4 92.1 

𝑅 (t) COVID-19 0.1% 176 14.4 90 118 
(85) 

95 
(57, 153) 

108 
(85) 

84 
(49, 140) 

11.7 92.2 

2 COVID-19 0.01% 399 1.2 90 150 
(128) 

110 
(64, 191) 

248 
(154) 

211 
(139, 317) 

1.0 91.0 

4 COVID-19 0.01% 274 5.0 90 
140 

(110) 
106 

(64, 180) 
168 

(116) 
136 

(86, 216) 4.1 91.4 

𝑅 (t) COVID-19 0.01% 304 3.6 90 
145 

(119) 
108 

(64, 187) 
184 

(120) 
153 

(97, 239) 3.0 91.2 

2 SARS 0.1% 164 16.3 90 
117 
(85) 

94 
(57, 150) 

101 
(81) 

77 
(45, 132) 13.9 92.3 

4 SARS 0.1% 112 27.8 90 98 
(72) 

79 
(47, 128) 

72 
(64) 

51 
(27, 95) 

23.3 93.2 

𝑅 (t) SARS 0.1% 107 29.2 90 96 
(71) 

78 
(45, 126) 

70 
(64) 

50 
(26, 92) 

25.1 93.4 

2 MERS 0.1% 88 35.3 90 
87 

(66) 
70 

(40, 115) 
59 

(57) 
39 

(20, 77) 29.8 93.7 

4 MERS 0.1% 63 45.2 90 
73 

(59) 
59 

(30, 100) 
46 

(49) 
28 

(14, 60) 38.8 94.5 

𝑅 (t) MERS 0.1% 44 54.3 90 
61 

(54) 
48 

(20, 86) 
36 

(43) 
19 

(9, 46) 47.0 94.8 
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Table	4.	Simulation	results	of	Bayesian	adaptive	RCT	for	vaccines	obtained	from	10,000	Monte	Carlo	runs	and	assuming	
𝑳𝑫 𝟏𝟎𝟎.	𝑹𝟎	denotes	the	basic	reproduction	number,	µ	the	disease	morality,	and	𝑰𝟎	the	proportion	of	initial	infected	
subjects.	Sample	size	refers	to	the	number	of	subjects	enrolled	in	each	arm	of	the	RCT.	SD	denotes	standard	deviation,	
and	IQR	the	interquartile	range	about	the	median.	𝑹𝟎(t)	denotes	the	use	of	a	dynamic	transmission	model	with	half‐life	
𝒕𝟐 𝟑	weeks	and	window	length	𝝉 𝟏	week.	

Epidemic Parameters Non-Adaptive 
Adaptive (100,000 Monte Carlo Runs) 

Sample Size (H=0) Sample Size (H=1) 
𝛼 % Power % 

𝑅  µ	 𝐼  Sample 
Size 𝛼 % Power % Mean 

(SD) 
Median 
(IQR) 

Mean 
(SD) 

Median 
(IQR) 

2 COVID-19 0.1% 181 13.6 90 
122 
(91) 

95 
(58, 158) 

112 
(87) 

86 
(51, 145) 11.3 92.4 

4 COVID-19 0.1% 111 28.1 90 
97 

(71) 
78 

(47, 127) 
72 

(64) 
52 

(27, 95) 23.4 92.8 

𝑅 (t) COVID-19 0.1% 117 26.4 90 71 
(49) 

80 
(49, 132) 

74 
(67) 

53 
(29, 98) 

21.8 93.1 

2 COVID-19 0.01% 342 2.3 90 148 
(124) 

110 
(64, 191) 

212 
(137) 

177 
(115, 275) 

2.1 90.9 

4 COVID-19 0.01% 232 7.9 90 
132 

(100) 
104 

(61, 171) 
142 

(103) 
113 

(69, 184) 6.6 91.4 

𝑅 (t) COVID-19 0.01% 244 6.9 90 
132 

(101) 
102 

(63, 171) 
148 

(106) 
118 

(73, 191) 5.4 91.7 

2 SARS 0.1% 99 31.7 90 
91 

(67) 
74 

(44, 119) 
65 

(62) 
44 

(24, 86) 26.6 93.5 

4 SARS 0.1% 65 44.3 90 74 
(59) 

60 
(32, 99) 

47 
(50) 

29 
(14, 61) 

37.6 94.5 

𝑅 (t) SARS 0.1% 50 51.3 90 65 
(55) 

52 
(23, 91) 

40 
(45) 

23 
(11, 51) 

44.2 94.8 

2 MERS 0.1% 27 64.2 90 
49 

(49) 
36 

(11, 71) 
28 

(37) 
13 

(6, 34) 55.4 95.9 

4 MERS 0.1% 21 68.1 90 
45 

(48) 
31 

(8, 66) 
25 

(35) 
11 

(5, 29) 58.9 96.3 

𝑅 (t) MERS 0.1% 7 79.2 90 
33 

(41) 
14 

(4, 50) 
17 

(27) 
6 

(3, 18) 69.1 97.2 
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Figure	 1.	 Optimal	 Type	 I	 error	 rate	𝜶 	of	 a	 non‐adaptive	 Bayesian	 RCT	 vs.	 basic	
reproduction	number	𝑹𝟎	(assuming	𝑰𝟎 𝟎. 𝟏%,	𝑳𝑫 𝟏𝟎𝟎,	disease	mortality	of	COVID‐
19,	and	constant	𝑹𝟎).	The	Bayesian	decision	model	yields	a	higher	𝜶	for	epidemics	
with	high	and	low	infectivity.	

	

 

Figure	2.	Subject	sample	size	 in	each	arm	of	a	Bayesian	adaptive	RCT	under	H	=	1	
decreases	with	 the	 basic	 reproduction	 number	𝑹𝟎 	(assuming	𝑰𝟎 𝟎. 𝟏% ,	𝑳𝑫 𝟏𝟎𝟎	
and	disease	mortality	of	COVID‐19).	BNA	denotes	Bayesian	non‐adaptive	optimal;	BA	
50%	denotes	median	patient	size	of	Bayesian	adaptive.		The	25%	and	75%	quantiles	
of	Bayesian	adaptive	patient	size	are	shown	as	lower	and	upper	ends	of	the	error	bar.	
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Table	5.	Optimal	sample	size	and	Type	I	error	𝜶	of	Bayesian	non‐adaptive	RCT	for	non‐
vaccine	anti‐infective	 therapeutics	 for	dynamic	 transmission	model.	𝑹𝟎	denotes	 the	
basic	reproduction	number,	µ	 the	disease	morality,	and	𝑰𝟎 	the	proportion	of	 initial	
infected	subjects.	Sample	size	refers	to	the	number	of	subjects	enrolled	in	each	arm	of	
the	RCT.	𝑹𝟎(t)	denotes	the	use	of	a	dynamic	transmission	model	with	𝜷𝟎 𝟑,	𝜷∞ 𝟏. 𝟓.	

	
 

Disease I  R  t (week) τ (week) 
Sample 

Size 𝛼 % Power % 

COVID-19 0.1% 

2 NA NA 242 7.1 90 
4 NA NA 158 17.3 90 

𝑅 (t) 3 0.5 166 16.0 90 
𝑅 (t) 3 1 176 14.4 90 
𝑅 (t) 6 0.5 176 14.4 90 
𝑅 (t) 6 1 177 14.2 90 

SARS 0.1% 

2 NA NA 164 16.3 90 
4 NA NA 112 27.8 90 

𝑅 (t) 3 0.5 100 31.3 90 
𝑅 (t) 3 1 107 29.2 90 
𝑅 (t) 6 0.5 118 26.2 90 
𝑅 (t) 6 1 119 25.9 90 

MERS 0.1% 

2 NA NA 88 35.3 90 
4 NA NA 63 45.2 90 

𝑅 (t) 3 0.5 41 55.9 90 
𝑅 (t) 3 1 44 54.3 90 
𝑅 (t) 6 0.5 59 47.0 90 
𝑅 (t) 6 1 60 46.5 90 
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Supplementary	Materials	

Figure	3.	Sensitivity	of	optimal	sample	size	(in	each	arm	of	non‐adaptive	Bayesian	RCT)	
to	the	weekly	subject	enrollment	rate	𝜿.	From	the	lower	to	upper	end	of	each	box	plot,	
the	five‐parameter	summary	corresponds	to	[50%,	75%,	100%,	125%,	150%]	of	the	
baseline	value	𝜿 𝟏𝟎𝟎	used	in	our	analysis	(Table	1).	

 
 

Figure	4.	Sensitivity	of	optimal	Type	I	error	rate	to	the	weekly	subject	enrollment	rate	
𝜿 .	 From	 the	 upper	 to	 lower	 end	 of	 each	 box	 plot,	 the	 five‐parameter	 summary	
corresponds	to	[50%,	75%,	100%,	125%,	150%]	of	the	baseline	value	𝜿 𝟏𝟎𝟎	used	in	
our	analysis	(Table	1).	
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Figure	5.	Sensitivity	of	optimal	sample	size	(in	each	arm	of	non‐adaptive	Bayesian	RCT)	
to	the	signal	to	noise	ratio	(SNR)	𝛒	of	treatment	effect	(Chaudhuri	and	Lo,	2018).	From	
the	upper	to	lower	end	of	each	box	plot,	the	five‐parameter	summary	corresponds	to	
[50%,	75%,	100%,	125%,	150%]	of	the	baseline	value	𝛒 𝟎. 𝟐𝟓	used	in	our	analysis	
(Table	1).	

 
 

Figure	6.	Sensitivity	of	optimal	Type	I	error	rate	to	the	signal	to	noise	ratio	(SNR)	𝛒	of	
treatment	effect	(Chaudhuri	and	Lo,	2018).	From	the	upper	to	lower	end	of	each	box	
plot,	the	five‐parameter	summary	corresponds	to	[50%,	75%,	100%,	125%,	150%]	of	
the	baseline	value	𝛒 𝟎. 𝟐𝟓	used	in	our	analysis	(Table	1).	
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Figure	7.	Sensitivity	of	optimal	sample	size	(in	each	arm	of	non‐adaptive	Bayesian	RCT)	
to	the	prior	probability	of	having	an	ineffective	treatment	𝒑𝟎.	From	the	lower	to	upper	
end	of	each	box	plot,	the	five‐parameter	summary	corresponds	to	[70%,	85%,	100%,	
115%,	125%]	of	the	baseline	value	𝒑𝟎 𝟕𝟕%	used	in	our	analysis	(Table	1).	

 
 

Figure	8.	Sensitivity	of	optimal	Type	I	error	rate	to	the	prior	probability	of	having	an	
ineffective	 treatment	𝒑𝟎 .	 From	 the	 upper	 to	 lower	 end	 of	 each	 box	 plot,	 the	 five‐
parameter	summary	corresponds	to	[70%,	85%,	100%,	115%,	125%]	of	the	baseline	
value	𝒑𝟎 𝟕𝟕%	used	in	our	analysis	(Table	1).	
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Figure	9.	Sensitivity	of	optimal	sample	size	(in	each	arm	of	non‐adaptive	Bayesian	RCT)	
to	 the	 time	 to	assess	 the	efficacy	of	 the	non‐vaccine	anti‐infective	 therapeutics	∆𝒕.	
From	 the	 upper	 to	 lower	 end	 of	 each	 box	 plot,	 the	 five‐parameter	 summary	
corresponds	 to	 [0%,	50%,	100%,	150%,	200%]	of	 the	baseline	value	 	∆𝒕 𝟏 𝐰𝐞𝐞𝐤	
used	in	our	analysis	(Table	1).	

 
 

Figure	10.	Sensitivity	of	optimal	Type	I	error	rate	to	the	time	to	assess	the	efficacy	of	
the	anti‐infective	therapeutic	∆𝒕.	From	the	 lower	to	upper	end	of	each	box	plot,	the	
five‐parameter	 summary	 corresponds	 to	 [0%,	 50%,	 100%,	 150%,	 200%]	 of	 the	
baseline	value	∆𝒕 𝟏 𝐰𝐞𝐞𝐤	used	in	our	analysis	(Table	1).	
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Figure	11.	Sensitivity	of	optimal	sample	size	(in	each	arm	of	non‐adaptive	Bayesian	
RCT)	to	the	incubation	rate	a	of	the	infectious	disease.	From	the	upper	to	lower	end	of	
each	box	plot,	the	five‐parameter	summary	corresponds	to	[50%,	75%,	100%,	125%,	
150%]	of	the	baseline	value		𝒂 𝟏 𝐰𝐞𝐞𝐤 used	in	our	analysis	(Table	1).	

 
 

Figure	 12.	 Sensitivity	 of	 optimal	Type	 I	 error	 rate	 to	 the	 incubation	 rate	 a	 of	 the	
infectious	disease.	From	the	lower	to	upper	end	of	each	box	plot,	the	five‐parameter	
summary	corresponds	to	[50%,	75%,	100%,	125%,	150%]	of	the	baseline	value		𝒂
𝟏 𝐰𝐞𝐞𝐤 used	in	our	analysis	(Table	1).	
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Table	6.	Optimal	sample	size	and	Type	I	error	rate	𝜶	for	Bayesian	non‐adaptive	RCT	
on	 anti‐infective	 therapeutics	 with	𝑹𝟎 	(basic	 reproduction	 number)	 close	 to	 1.	 µ	
denotes	the	disease	morality,	and	𝑰𝟎	the	proportion	of	initial	infected	subjects.	Sample	
size	denotes	the	number	of	subjects	enrolled	in	each	arm	of	the	RCT.		

 

Disease 𝑅 	 𝐼 	 Sample Size 𝛼 % Power % 

COVID-19 

1.25 0.1% 185 13.1 90 
1.5 0.1% 239 7.3 90 

1.75 0.1% 250 6.5 90 
2 0.1% 242 7.1 90 
4 0.1% 158 17.3 90 

1.25 0.01% 233 7.8 90 
1.5 0.01% 340 2.4 90 

1.75 0.01% 395 1.3 90 
2 0.01% 399 1.2 90 
4 0.01% 274 5.0 90 

SARS 

1.25 0.1% 69 42.6 90 
1.5 0.1% 140 20.9 90 

1.75 0.1% 162 16.6 90 
2 0.1% 164 16.3 90 
4 0.1% 112 27.8 90 

MERS 

1.25 0.1% 6 80.2 90 
1.5 0.1% 51 50.8 90 

1.75 0.1% 80 38.2 90 
2 0.1% 63 45.2 90 
4 0.1% 60 46.5 90 
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Table	7.	Simulation	results	of	Bayesian	adaptive	RCT	on	non‐vaccine	anti‐infective	therapeutics	obtained	from	10,000	
Monte	Carlo	runs	and	assuming	𝑳𝑫 𝟏𝟎.	𝑹𝟎	denotes	the	basic	reproduction	number,	µ	the	disease	morality,	and	𝑰𝟎	the	
proportion	of	initial	infected	subjects.	Sample	size	refers	to	the	number	of	subjects	enrolled	in	each	arm	of	the	RCT.	SD	
denotes	standard	deviation,	and	IQR	the	interquartile	range	about	the	median.	𝑹𝟎(t)	denotes	dynamic	transmission	
model	with	half‐life	𝒕𝟐 𝟑	weeks	and	window	length	𝝉 𝟏	week.	

 

Epidemic Parameters Non-Adaptive 
Adaptive (100,000 Monte Carlo Runs) 

Sample Size (H=0) Sample Size (H=1) 
𝛼 % Power % 

𝑅  µ	 𝐼  Sample 
Size 𝛼 % Power % Mean 

(SD) 
Median 
(IQR) 

Mean 
(SD) 

Median 
(IQR) 

2 COVID-19 0.1% 281 4.7 90 141 
(113) 

107 
(63, 182) 

175 
(121) 

142 
(90, 226) 

3.7 91.3 

4 COVID-19 0.1% 176 14.4 90 
119 
(86) 

96 
(59, 153) 

108 
(85) 

83 
(48, 139) 11.9 92.3 

𝑅 (t) COVID-19 0.1% 213 9.7 90 
128 
(95) 

101 
(61, 165) 

130 
(97) 

53 
(29, 98) 7.7 91.9 

2 COVID-19 0.01% 433 0.8 90 
150 

(128) 
109 

(64, 191) 
272 

(166) 
223 

(156, 348) 0.6 91.1 

4 COVID-19 0.01% 290 4.2 90 143 
(113) 

108 
(63, 185) 

177 
(119) 

145 
(92, 229) 

3.3 91.1 

𝑅 (t) COVID-19 0.01% 345 2.3 90 146 
(118) 

111 
(65, 188) 

217 
(119) 

181 
(117, 282) 

1.9 91.0 

2 SARS 0.1% 262 5.7 90 
138 

(107) 
107 

(63, 179) 
161 

(115) 
130 

(81, 207) 4.6 91.4 

4 SARS 0.1% 167 15.8 90 
118 
(86) 

94 
(57, 154) 

102 
(82) 

77 
(46, 133) 13.6 92.3 

𝑅 (t) SARS 0.1% 194 11.9 90 
126 
(93) 

100 
(60, 165) 

118 
(90) 

92 
(55, 154) 9.7 92.5 

2 MERS 0.1% 227 8.4 90 130 
(97) 

102 
(62, 167) 

140 
(101) 

112 
(68, 181) 

7.4 91.6 

4 MERS 0.1% 149 19.0 90 110 
(78) 

89 
(55, 142) 

93 
(78) 

69 
(39, 122) 

16.1 92.7 

𝑅 (t) MERS 0.1% 163 16.5 90 
116 
(84) 

93 
(56, 151) 

101 
(82) 

78 
(45, 121) 13.7 92.2 

 . 
C

C
-B

Y
 4.0 International license

It is m
ade available under a 
 is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
(w

h
ich

 w
as n

o
t certified

 b
y p

eer review
)

T
he copyright holder for this preprint 

this version posted A
pril 14, 2020. 

.
https://doi.org/10.1101/2020.04.09.20059634

doi: 
m

edR
xiv preprint 

https://doi.org/10.1101/2020.04.09.20059634
http://creativecommons.org/licenses/by/4.0/


8 April 2020 © 2020 by Xu, Chaudhuri, Xiao, and Lo Page 26 of 27 
All Rights Reserved 

Table	8.	Simulation	results	of	Bayesian	adaptive	RCT	on	vaccines	obtained	from	10,000	Monte	Carlo	runs	and	assuming	
𝑳𝑫 𝟏𝟎	.	𝑹𝟎		denotes	 the	basic	reproduction	number,	µ	 the	disease	morality,	and	𝑰𝟎		the	proportion	of	 initial	 infected	
subjects.	Sample	size	refers	to	the	number	of	subjects	enrolled	in	each	arm	of	the	RCT.	SD	denotes	standard	deviation,	
and	 IQR	 the	 interquartile	 range	about	 the	median.	𝑹𝟎	(t)	denotes	dynamic	 transmission	model	with	half‐life	𝒕𝟐 𝟑	
weeks	and	window	length	𝝉 𝟏	week.	
	

Epidemic Parameters Non-Adaptive 
Adaptive (100,000 Monte Carlo Runs) 

Sample Size (H=0) Sample Size (H=1) 
𝛼 % Power % 

𝑅  µ	 𝐼  Sample 
Size 𝛼 % Power % Mean 

(SD) 
Median 
(IQR) 

Mean 
(SD) 

Median 
(IQR) 

2 COVID-19 0.1% 221 8.9 90 
130 
(98) 

103 
(62, 167) 

136 
(100) 

109 
(66, 176) 7.5 91.9 

4 COVID-19 0.1% 129 23.4 90 
105 
(78) 

84 
(51, 135) 

80 
(70) 

58 
(33, 105) 19.2 92.2 

𝑅 (t) COVID-19 0.1% 151 18.7 90 
114 
(83) 

92 
(56, 149) 

94 
(78) 

69 
(40, 123) 15.4 92.4 

2 COVID-19 0.01% 377 1.6 90 148 
(126) 

110 
(64, 187) 

236 
(150) 

200 
(130, 300) 

1.2 90.8 

4 COVID-19 0.01% 247 6.7 90 135 
(105) 

103 
(63, 175) 

150 
(106) 

121 
(75, 196) 

5.4 91.3 

𝑅 (t) COVID-19 0.01% 281 4.6 90 
139 

(109) 
107 

(62, 181) 
170 

(116) 
139 

(88, 220) 3.7 91.4 

2 SARS 0.1% 201 11.0 90 
127 
(94) 

100 
(61, 165) 

122 
(91) 

96 
(58, 159) 9.9 91.9 

4 SARS 0.1% 120 25.6 90 
101 
(74) 

81 
(49, 131) 

76 
(68) 

55 
(30, 100) 20.9 93.4 

𝑅 (t) SARS 0.1% 134 22.2 90 106 
(76) 

86 
(52, 139) 

83 
(72) 

60 
(33, 108) 

18.3 92.5 

2 MERS 0.1% 166 16.0 90 116 
(84) 

92 
(56, 152) 

102 
(84) 

77 
(45, 132) 

13.5 92.2 

4 MERS 0.1% 103 30.4 90 
93 

(70) 
75 

(44, 122) 
67 

(63) 
46 

(24, 88) 25.7 93.5 

𝑅 (t) MERS 0.1% 105 29.8 90 
96 

(71) 
77 

(45, 125) 
68 

(62) 
48 

(25, 91) 25.4 93.3 
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Figure	13.	Optimal	Type	I	error	rate	𝜶	of	non‐adaptive	Bayesian	RCT	monotonically	
increases	with	the	basic	reproduction	number	𝑹𝟎	(assuming	𝑰𝟎 𝟎. 𝟏%,	𝑳𝑫 𝟏𝟎𝟎	and	
disease	mortality	of	COVID‐19)	if	we	define	the	loss	of	making	a	Type	I	error	as	the	
absolute	risk	of	being	susceptible	𝑺 𝒕 𝑵𝑳𝑺.		

This	alternative	definition	is	not	very	realistic.	For	an	epidemic	with	𝑹𝟎 𝟐,	the	loss	
of	Type	I	error	converges	to	a	large	positive	value	𝑺 𝑻 𝑵𝑳𝑺	as	time	approaches	the	end	
of	 the	epidemic	outbreak.	However,	at	 the	end	of	 the	outbreak,	 there	are	no	more	
infected	patients	and	thus	no	susceptible	subjects.	Therefore,	the	loss	of	Type	I	error	
should	approach	zero	as	𝒕 → 𝑻.	This	 is	 the	case	 for	 the	excess	risk	of	susceptibility	
𝑺 𝒕 𝑺 𝑻 𝑵𝑳𝑺	but	not	for	the	absolute	risk	of	susceptibility	𝑺 𝒕 𝑵𝑳𝑺.	
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