Por favor, use este identificador para citar o enlazar este ítem: http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/7698
Predicting Epitope Candidates for SARS-CoV-2
Akshay Agarwal
Kristen Beck
Sara Capponi
Mark Kunitomi
Gowri Nayar
Edward Seabolt
Gandhar Mahadeshwar
Simone Bianco
Vandana Mukherjee
James Kaufman
Acceso Abierto
Atribución-NoComercial-SinDerivadas
https://doi.org/10.1101/2022.02.09.479786
https://www.biorxiv.org/content/10.1101/2022.02.09.479786v1
Epitopes are short amino acid sequences that define the antigen signature to which an antibody binds. In light of the current pandemic, epitope analysis and prediction is paramount to improving serological testing and developing vaccines. In this paper, we leverage known epitope sequences from SARS-CoV, SARS-CoV-2 and other Coronaviridae and use those known epitopes to identify additional antigen regions in 62k SARS-CoV-2 genomes. Additionally, we present epitope distribution across SARS-CoV-2 genomes, locate the most commonly found epitopes, discuss where epitopes are located on proteins, and how epitopes can be grouped into classes. We also discuss the mutation density of different regions on proteins using a big data approach. We find that there are many conserved epitopes between SARS-CoV-2 and SARS-CoV, with more diverse sequences found in Nucleoprotein and Spike Glycoprotein.
medRxiv and bioRxiv
10-02-2022
Preimpreso
https://www.biorxiv.org/
Inglés
Epidemia COVID-19
Público en general
VIRUS RESPIRATORIOS
Versión publicada
publishedVersion - Versión publicada
Aparece en las colecciones: Artículos científicos

Cargar archivos:


Fichero Tamaño Formato  
Predicting Epitope Candidates for SARS COV2.pdf13.71 MBAdobe PDFVisualizar/Abrir