Por favor, use este identificador para citar o enlazar este ítem: http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/7593
Understanding Evolution of COVID-19 Driven Mortality Rate
Ishika Bhaumik
Suman Sinha Ray
ANSHUL CHAUDHARY
Abhishek Srivastava
Prashant Kodgire
Acceso Abierto
Atribución-NoComercial-SinDerivadas
https://doi.org/10.1101/2022.01.16.22269210
https://www.medrxiv.org/content/10.1101/2022.01.16.22269210v1
The precise reason for variations in COVID-19 related mortality rates is unknown. In this article, we show that a biological science guided machine learning-based approach can predict the evolution of mortality rates across countries. We collected publicly available data of all the countries in the world with regard to the mortality rate and the relevant biological and socio-economical causes and analyzed using a novel FFT driven machine learning algorithm. Our results demonstrate how COVID-19 related mortality rate is closely dependent on a multitude of socio-economic factors (population density, GDP per capita, global health index and population above 65 years of age), environmental (PM2.5 air pollution) and food habits (meat consumption per capita, alcohol consumption per capita, dairy product consumption per capita and sugar consumption per capita). We anticipate that our work will initiate conversations between health officials, policymakers and world leaders towards providing preventative measures against COVID-19 and future coronavirus-based diseases.
medRxiv and bioRxiv
18-01-2022
Preimpreso
www.medrxiv.org
Inglés
Epidemia COVID-19
Público en general
VIRUS RESPIRATORIOS
Versión publicada
publishedVersion - Versión publicada
Aparece en las colecciones: Artículos científicos

Cargar archivos: