Por favor, use este identificador para citar o enlazar este ítem:
http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/7485
Machine learning guided design of high affinity ACE2 decoys for SARS-CoV-2 neutralization | |
Matthew Chan Kui Chan Erik Procko . Diwakar Shukla | |
Acceso Abierto | |
Atribución-NoComercial-SinDerivadas | |
https://doi.org/10.1101/2021.12.22.473902 | |
https://www.biorxiv.org/content/10.1101/2021.12.22.473902v1 | |
A potential therapeutic candidate for neutralizing SARS-CoV-2 infection is engineering high-affinity soluble ACE2 decoy proteins to compete for binding of the viral spike (S) protein. Previously, a deep mutational scan of ACE2 was performed and has led to the identification of a triple mutant ACE2 variant, named ACE22.v.2.4, that exhibits nanomolar affinity binding to the RBD domain of S. Using a recently developed transfer learning algorithm, TLmutation, we sought to identified other ACE2 variants, namely double mutants, that may exhibit similar binding affinity with decreased mutational load. Upon training a TLmutation model on the effects of single mutations, we identified several ACE2 double mutants that bind to RBD with tighter affinity as compared to the wild type, most notably, L79V;N90D that binds RBD with similar affinity to ACE22.v.2.4. The successful experimental validation of the double mutants demonstrated the use transfer and supervised learning approaches for engineering protein-protein interactions and identifying high affinity ACE2 peptides for targeting SARS-CoV-2. | |
medRxiv and bioRxiv | |
23-12-2021 | |
Preimpreso | |
www.biorxiv.org | |
Inglés | |
Epidemia COVID-19 | |
Público en general | |
OTRAS | |
Versión publicada | |
publishedVersion - Versión publicada | |
Aparece en las colecciones: | Artículos científicos |
Cargar archivos:
Fichero | Tamaño | Formato | |
---|---|---|---|
Machine learning guided design of high affinity ACE2 decoys for SARS COV2 neutralization.pdf | 1.64 MB | Adobe PDF | Visualizar/Abrir |