Por favor, use este identificador para citar o enlazar este ítem: http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/7485
Machine learning guided design of high affinity ACE2 decoys for SARS-CoV-2 neutralization
Matthew Chan
Kui Chan
Erik Procko .
Diwakar Shukla
Acceso Abierto
Atribución-NoComercial-SinDerivadas
https://doi.org/10.1101/2021.12.22.473902
https://www.biorxiv.org/content/10.1101/2021.12.22.473902v1
A potential therapeutic candidate for neutralizing SARS-CoV-2 infection is engineering high-affinity soluble ACE2 decoy proteins to compete for binding of the viral spike (S) protein. Previously, a deep mutational scan of ACE2 was performed and has led to the identification of a triple mutant ACE2 variant, named ACE22.v.2.4, that exhibits nanomolar affinity binding to the RBD domain of S. Using a recently developed transfer learning algorithm, TLmutation, we sought to identified other ACE2 variants, namely double mutants, that may exhibit similar binding affinity with decreased mutational load. Upon training a TLmutation model on the effects of single mutations, we identified several ACE2 double mutants that bind to RBD with tighter affinity as compared to the wild type, most notably, L79V;N90D that binds RBD with similar affinity to ACE22.v.2.4. The successful experimental validation of the double mutants demonstrated the use transfer and supervised learning approaches for engineering protein-protein interactions and identifying high affinity ACE2 peptides for targeting SARS-CoV-2.
medRxiv and bioRxiv
23-12-2021
Preimpreso
www.biorxiv.org
Inglés
Epidemia COVID-19
Público en general
OTRAS
Versión publicada
publishedVersion - Versión publicada
Aparece en las colecciones: Artículos científicos

Cargar archivos: