Por favor, use este identificador para citar o enlazar este ítem: http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/7454
COVID-19 Clinical footprint to infer about mortality
Carlos E. Rodríguez
RAMSES HUMBERTO MENA CHAVEZ
Acceso Abierto
Atribución-NoComercial-SinDerivadas
arXiv:2104.07172
https://arxiv.org/abs/2104.07172
Information of 1.6 million patients identified as SARS-CoV-2 positive in Mexico is used to understand the relationship between comorbidities, symptoms, hospitalizations and deaths due to the COVID-19 disease. Using the presence or absence of these latter variables a clinical footprint for each patient is created. The risk, expected mortality and the prediction of death outcomes, among other relevant quantities, are obtained and analyzed by means of a multivariate Bernoulli distribution. The proposal considers all possible footprint combinations resulting in a robust model suitable for Bayesian inference.
Cornell University
15-04-2021
Preimpreso
arXiv
Inglés
Epidemia COVID-19
ANÁLISIS DE DATOS
Versión publicada
publishedVersion - Versión publicada
Aparece en las colecciones: Artículos científicos

Cargar archivos: