Por favor, use este identificador para citar o enlazar este ítem:
http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/7454
COVID-19 Clinical footprint to infer about mortality | |
Carlos E. Rodríguez RAMSES HUMBERTO MENA CHAVEZ | |
Acceso Abierto | |
Atribución-NoComercial-SinDerivadas | |
arXiv:2104.07172 | |
https://arxiv.org/abs/2104.07172 | |
Information of 1.6 million patients identified as SARS-CoV-2 positive in Mexico is used to understand the relationship between comorbidities, symptoms, hospitalizations and deaths due to the COVID-19 disease. Using the presence or absence of these latter variables a clinical footprint for each patient is created. The risk, expected mortality and the prediction of death outcomes, among other relevant quantities, are obtained and analyzed by means of a multivariate Bernoulli distribution. The proposal considers all possible footprint combinations resulting in a robust model suitable for Bayesian inference. | |
Cornell University | |
15-04-2021 | |
Preimpreso | |
arXiv | |
Inglés | |
Epidemia COVID-19 | |
ANÁLISIS DE DATOS | |
Versión publicada | |
publishedVersion - Versión publicada | |
Aparece en las colecciones: | Artículos científicos |
Cargar archivos:
Fichero | Tamaño | Formato | |
---|---|---|---|
Covid 19 Clinical footprint to infer about mortality.pdf | 1.28 MB | Adobe PDF | Visualizar/Abrir |