Por favor, use este identificador para citar o enlazar este ítem: http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/7452
Maximum likelihood estimation for a stochastic SEIR system for COVID-19
FERNANDO BALTAZAR LARIOS
FRANCISCO JAVIER DELGADO VENCES
SAUL DIAZ INFANTE VELASCO
Acceso Abierto
Atribución-NoComercial-SinDerivadas
arXiv:2111.14261
https://arxiv.org/abs/2111.14261
The parameter estimation of epidemic data-driven models is a crucial task. In some cases, we can formulate a better model by describing uncertainty with appropriate noise terms. However, because of the limited extent and partial information, (in general) this kind of model leads to intractable likelihoods. Here, we illustrate how a stochastic extension of the SEIR model improves the uncertainty quantification of an overestimated MCMC scheme based on its deterministic model to count reported-confirmed COVID-19 cases in Mexico City. Using a particular mechanism to manage missing data, we developed MLE for some parameters of the stochastic model, which improves the description of variance of the actual data.
Cornell University
24-11-2021
Preimpreso
arxiv
Inglés
Epidemia COVID-19
Investigadores
Público en general
ANÁLISIS ESTADÍSTICO
Versión publicada
publishedVersion - Versión publicada
Aparece en las colecciones: Artículos científicos

Cargar archivos: