Por favor, use este identificador para citar o enlazar este ítem: http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/7449
Hidden Effects of COVID-19 on Healthcare Workers: A Machine Learning Analysis
Mostafa Rezapour
Acceso Abierto
Atribución-NoComercial-SinDerivadas
arXiv:2112.06261
https://arxiv.org/abs/2112.06261
In this paper, we analyze some effects of the COVID-19 pandemic on healthcare workers. We specifically focus on alcohol consumption habit changes among healthcare workers using a mental health survey data obtained from the University of Michigan Inter-University Consortium for Political and Social Research. We use supervised and unsupervised machine learning methods and models such as Decision Trees, Logistic Regression, Naive Bayes classifier, k-Nearest Neighbors, Support Vector Machines, Multilayer perceptron, Random Forests, XGBoost, CatBoost, LightGBM, Synthetic Minority Oversampling, Chi-Squared Test and mutual information method to find out relationships between COVID-19 related negative effects and alcohol use changes in healthcare workers. Our findings suggest that some effects of the COVID-19 pandemic such as school closure, work schedule change and COVID-related news exposure may lead to an increase in alcohol use.
Cornell University
12-12-2021
Preimpreso
arxiv.org
Inglés
Epidemia COVID-19
Investigadores
Público en general
OTRAS
Versión publicada
publishedVersion - Versión publicada
Aparece en las colecciones: Artículos científicos

Cargar archivos: