Por favor, use este identificador para citar o enlazar este ítem: http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/7025
Filtering and improved Uncertainty Quantification in the dynamic estimation of effective reproduction numbers
Marcos Capistrán
ANTONIO CAPELLA KORT
José Andrés Christen Gracia
Acceso Abierto
Atribución
2012.02168v1
https://arxiv.org/abs/2012.02168
The effective reproduction number Rt measures an infectious disease's transmissibility as the number of secondary infections in one reproduction time in a population having both susceptible and non-susceptible hosts. Current approaches do not quantify the uncertainty correctly in estimating Rt , as expected by the observed variability in contagion patterns. We elaborate on the Bayesian estimation of Rt by improving on the Poisson sampling model of Cori et al. (2013). By adding an autoregressive latent process, we build a Dynamic Linear Model on the log of observed Rt s, resulting in a filtering type Bayesian inference. We use a conjugate analysis, and all calculations are explicit. Results show an improved uncertainty quantification on the estimation of Rt 's, with a reliable method that could safely be used by non-experts and within other forecasting systems. We illustrate our approach with recent data from the current COVID19 epidemic in Mexico.
arXiv
03-12-2020
Preimpreso
https://arxiv.org/abs/2012.02168
Inglés
Epidemia COVID-19
Investigadores
Público en general
VIRUS RESPIRATORIOS
Versión publicada
publishedVersion - Versión publicada
Aparece en las colecciones: Artículos científicos

Cargar archivos: