Por favor, use este identificador para citar o enlazar este ítem: http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/6928
Forecasting hospital demand during COVID-19pandemic outbreaks
Marcos Aurelio Capistrán Ocampo
ANTONIO CAPELLA KORT
José Andrés Christen Gracia
Acceso Abierto
Atribución-SinDerivadas
https://arxiv.org/abs/2006.01873
We present a compartmental SEIRD model aimed at forecasting hospital occupancy in metropolitan areas during the current COVID-19 outbreak. The model features asymptomatic and symptomatic infections with detailed hospital dynamics. We model explicitly branching probabilities and non exponential residence times in each latent and infected compartments. Using both hospital admittance confirmed cases and deaths we infer the contact rate and the initial conditions of the dynamical system, considering break points to model lockdown interventions. Our Bayesian approach allows us to produce timely probabilistic forecasts of hospital demand. The model has been used by the federal government of Mexico to assist public policy, and has been applied for the analysis of more than 70 metropolitan areas and the 32 states in the country.
arXiv
02-06-2020
Preimpreso
https://arxiv.org
Inglés
Epidemia COVID-19
Investigadores
Público en general
VIRUS RESPIRATORIOS
Versión publicada
publishedVersion - Versión publicada
Aparece en las colecciones: Artículos científicos

Cargar archivos:


Fichero Tamaño Formato  
Forecasting hospital demand during COVID.pdf1.48 MBAdobe PDFVisualizar/Abrir