Por favor, use este identificador para citar o enlazar este ítem: http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/5256
Government Responses Matter: Predicting Covid-19 cases in US under an empirical Bayesian time series framework
Ziyue Liu.
Wensheng Guo.
Acceso Abierto
Atribución-NoComercial-SinDerivadas
10.1101/2020.03.28.20044578
Since the Covid-19 outbreak, researchers have been predicting how the epidemic will evolve, especially the number in each country, through using parametric extrapolations based on the history. In reality, the epidemic progressing in a particular country depends largely on its policy responses and interventions. Since the outbreaks in some countries are earlier than United States, the prediction of US cases can benefit from incorporating the similarity in their trajectories. We propose an empirical Bayesian time series framework to predict US cases using different countries as prior reference. The resultant forecast is based on observed US data and prior information from the reference country while accounting for different population sizes. When Italy is used as prior in the prediction, which the US data resemble the most, the cases in the US will exceed 300,000 by the beginning of April unless strong measures are adopted.
www.medrxiv.org
2020
Artículo
https://www.medrxiv.org/content/10.1101/2020.03.28.20044578v1.full.pdf
Inglés
VIRUS RESPIRATORIOS
Aparece en las colecciones: Artículos científicos

Cargar archivos:


Fichero Tamaño Formato  
1108592.pdf730.54 kBAdobe PDFVisualizar/Abrir