Por favor, use este identificador para citar o enlazar este ítem: http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/4677
A Note on Early Epidemiological Analysis of Coronavirus Disease 2019 Outbreak using Crowdsourced Data
Giuseppe Arbia.
Acceso Abierto
Atribución-NoComercial-SinDerivadas
https://arxiv.org/pdf/2003.06207v1.pdf
Crowdsourcing data can prove of paramount importance in monitoring and controlling the spread of infectious diseases. The recent paper by Sun, Chen and Viboud (2020) is important because it contributes to the understanding of the epidemiology and of the spreading of Covid-19 in a period when most of the epidemic characteristics are still unknown. However, the use of crowdsourcing data raises a number of problems from the statistical point of view which run the risk of invalidating the results and of biasing estimation and hypothesis testing. While the work by Sun, Chen and Viboud (2020) has to be commended, given the importance of the topic for worldwide health security, in this paper we deem important to remark the presence of the possible sources of statistical biases and to point out possible solutions to them
arxiv.org
2020
Artículo
https://arxiv.org/pdf/2003.06207v1.pdf
Inglés
VIRUS RESPIRATORIOS
Aparece en las colecciones: Artículos científicos

Cargar archivos:


Fichero Tamaño Formato  
1107063.pdf226.06 kBAdobe PDFVisualizar/Abrir