Por favor, use este identificador para citar o enlazar este ítem: http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/4652
Structural and functional conservation of the programmed -1 ribosomal frameshift signal of SARS-CoV-2
Jamie A. Kelly.
Jonathan D. Dinman.
Acceso Abierto
Atribución-NoComercial-SinDerivadas
10.1101/2020.03.13.991083
17 years after the SARS-CoV epidemic, the world is facing the COVID-19 pandemic. COVID-19 is caused by a coronavirus named SARS-CoV-2. Given the most optimistic projections estimating that it will take more than a year to develop a vaccine, our best short term strategy may lie in identifying virus-specific targets for small molecule interventions. All coronaviruses utilize a molecular mechanism called -1 PRF to control the relative expression of their proteins. Prior analyses of SARS-CoV revealed that it utilizes a structurally unique three-stemmed mRNA pseudoknot to stimulate high rates of -1 PRF, that it also harbors a -1 PRF attenuation element. Altering -1 PRF activity negatively impacts virus replication, suggesting that this molecular mechanism may be therapeutically targeted. Here we present a comparative analysis of the original SARS-CoV and SARS-CoV-2 frameshift signals. Structural analyses reveal that the core -1 PRF signal, composed of the U UUA AAC slippery site and three-stemmed mRNA pseudoknot is highly conserved. In contrast, the upstream attenuator hairpin is less well conserved. Functional assays revealed that both elements promote similar rates of -1 PRF and that silent coding mutations in the slippery site strongly ablate -1 PRF activity. We suggest that molecules that were previously identified as inhibiting SARS-CoV mediated -1 PRF may serve as lead compounds to counter the current pandemic.
www.biorxiv.org
2020
Artículo
https://www.biorxiv.org/content/10.1101/2020.03.13.991083v1.full.pdf
Inglés
VIRUS RESPIRATORIOS
Aparece en las colecciones: Artículos científicos

Cargar archivos:


Fichero Tamaño Formato  
1107019.pdf634.86 kBAdobe PDFVisualizar/Abrir