Por favor, use este identificador para citar o enlazar este ítem:
http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/4384
Mapping the Landscape of Artificial Intelligence Applications against COVID-19 | |
Joseph Bullock. Alexandra. Luccioni. Katherine Hoffmann Pham. Cynthia Sin Nga Lam. Miguel Luengo-Oroz. | |
Acceso Abierto | |
Atribución-NoComercial-SinDerivadas | |
https://arxiv.org/pdf/2003.11336v1.pdf | |
COVID-19, the disease caused by the SARS-CoV-2 virus, has been declared a pandemic by the World Health Organization, with over 294,000 cases as of March 22nd 2020. In this review, we present an overview of recent studies using Machine Learning and, more broadly, Artificial Intelligence, to tackle many aspects of the COVID-19 crisis at different scales including molecular, medical and epidemiological applications. We finish with a discussion of promising future directions of research and the tools and resources needed to facilitate AI research. | |
arxiv.org | |
2020 | |
Artículo | |
https://arxiv.org/pdf/2003.11336v1.pdf | |
Inglés | |
VIRUS RESPIRATORIOS | |
Aparece en las colecciones: | Artículos científicos |
Cargar archivos:
Fichero | Tamaño | Formato | |
---|---|---|---|
1106462.pdf | 194.15 kB | Adobe PDF | Visualizar/Abrir |