Por favor, use este identificador para citar o enlazar este ítem:
http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/4187
Mining Coronavirus (COVID-19) Posts in Social Media | |
Negin Karisani. Payam Karisani. | |
Acceso Abierto | |
Atribución-NoComercial-SinDerivadas | |
https://arxiv.org/pdf/2004.06778v1.pdf | |
World Health Organization (WHO) characterized the novel coronavirus (COVID-19) as a global pandemic on March 11th, 2020. Before this and in late January, more specifically on January 27th, while the majority of the infection cases were still reported in China and a few cruise ships, we began crawling social media user postings using the Twitter search API. Our goal was to leverage machine learning and linguistic tools to better understand the impact of the outbreak in China. Unlike our initial expectation to monitor a local outbreak, COVID-19 rapidly spread across the globe. In this short article we report the preliminary results of our study on automatically detecting the positive reports of COVID-19 from social media user postings using state-of-the-art machine learning models. | |
arxiv.org | |
2020 | |
Artículo | |
https://arxiv.org/pdf/2004.06778v1.pdf | |
Inglés | |
VIRUS RESPIRATORIOS | |
Aparece en las colecciones: | Artículos científicos |
Cargar archivos:
Fichero | Tamaño | Formato | |
---|---|---|---|
1105989.pdf | 65.85 kB | Adobe PDF | Visualizar/Abrir |