Por favor, use este identificador para citar o enlazar este ítem: http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/4124
Planning as Inference in Epidemiological Models
Frank Wood.
Andrew Warrington.
Saeid Naderiparizi.
Christian Weilbach.
Vaden Masrani.
William Harvey.
Adam Scibior.
Boyan Beronov.
Ali Nasseri.
Acceso Abierto
Atribución-NoComercial-SinDerivadas
https://arxiv.org/pdf/2003.13221v2.pdf
In this work we demonstrate how existing software tools can be used to automate parts of infectious disease-control policy-making via performing inference in existing epidemiological dynamics models. The kind of inference tasks undertaken include computing, for planning purposes, the posterior distribution over putatively controllable, via direct policy-making choices, simulation model parameters that give rise to acceptable disease progression outcomes. Neither the full capabilities of such inference automation software tools nor their utility for planning is widely disseminated at the current time. Timely gains in understanding about these tools and how they can be used may lead to more fine-grained and less economically damaging policy prescriptions, particularly during the current COVID-19 pandemic.
arxiv.org
2020
Artículo
https://arxiv.org/pdf/2003.13221v2.pdf
Inglés
VIRUS RESPIRATORIOS
Aparece en las colecciones: Artículos científicos

Cargar archivos:


Fichero Tamaño Formato  
1105857.pdf3.21 MBAdobe PDFVisualizar/Abrir