Por favor, use este identificador para citar o enlazar este ítem: http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/3824
A Recursive Bifurcation Model for Predicting the Peak of COVID-19 Virus Spread in United States and Germany
Julia Shen.
Acceso Abierto
Atribución-NoComercial-SinDerivadas
10.1101/2020.04.09.20059329
Prediction on the peak time of COVID-19 virus spread is crucial to decision making on lockdown or closure of cities and states. In this paper we design a recursive bifurcation model for analyzing COVID-19 virus spread in different countries. The bifurcation facilitates a recursive processing of infected population through linear least-squares fitting. In addition, a nonlinear least-squares fitting is utilized to predict the future values of infected populations. Numerical results on the data from three countries (South Korea, United States and Germany) indicate the effectiveness of our approach.
www.medrxiv.org
2020
Artículo
https://www.medrxiv.org/content/10.1101/2020.04.09.20059329v1.full.pdf
Inglés
VIRUS RESPIRATORIOS
Aparece en las colecciones: Artículos científicos

Cargar archivos:


Fichero Tamaño Formato  
1105286.pdf588.69 kBAdobe PDFVisualizar/Abrir