Por favor, use este identificador para citar o enlazar este ítem: http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/3749
Prediction of SARS-CoV-2 epitopes across 9360 HLA class I alleles
Katie M Campbell.
Gabriela Steiner.
Daniel K Wells.
Antoni Ribas.
Anusha Kalbasi.
Acceso Abierto
Atribución-NoComercial-SinDerivadas
10.1101/2020.03.30.016931
Elucidating antiviral CD8 T lymphocyte responses to SARS-CoV-2 may shed light on the heterogeneity of clinical outcomes and inform vaccine or therapeutic approaches. To facilitate the evaluation of antiviral CD8 T cell responses to SARS-CoV-2, we generated a publicly accessible database of epitopes predicted to bind any class I HLA protein across the entire SARS-CoV-2 proteome. While a subset of epitopes from earlier betacoronaviruses, such as SARS-CoV (SARS), have been validated experimentally, validation systems are often biased toward specific HLA haplotypes (notably HLA-A*02:01) that only account for a fraction of the haplotypes of individuals affected by the SARS-CoV-2 pandemic. To enable evaluation of epitopes across individuals with a variety of HLA haplotypes, we computed the predicted binding affinities between 9-mer peptides derived from the annotated SARS-CoV-2 peptidome across 9,360 MHC class I HLA-A, -B, and -C alleles. There were 6,748 unique combinations of peptides and HLA alleles (pMHCs) with a predicted binding affinity of less than 500nM, including 1,103 unique peptides and 1,022 HLA alleles, spanning 11 annotated superfamilies. These peptides were derived from all 11 proteins spanning the SARS-CoV-2 peptidome, including peptides that have previously been validated experimentally. We also show evidence that these previously validated epitopes may be relevant in other HLA contexts. This complete dataset is available publicly: gs://pici-covid19-data-resources/mhci/peptide_predictions.
www.biorxiv.org
2020
Artículo
https://www.biorxiv.org/content/10.1101/2020.03.30.016931v1.full.pdf
Inglés
VIRUS RESPIRATORIOS
Aparece en las colecciones: Artículos científicos

Cargar archivos:


Fichero Tamaño Formato  
1105010.pdf1.43 MBAdobe PDFVisualizar/Abrir