Por favor, use este identificador para citar o enlazar este ítem: http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/3655
COVID-19 Epidemic Analysis using Machine Learning and Deep Learning Algorithms
Narinder Singh Punn.
Sanjay Kumar Sonbhadra.
Sonali Agarwal.
Acceso Abierto
Atribución-NoComercial-SinDerivadas
10.1101/2020.04.08.20057679
The catastrophic outbreak of Severe Acute Respiratory Syndrome - Coronavirus (SARS-CoV-2) also known as COVID-2019 has brought the worldwide threat to the living society. The whole world is putting incredible efforts to fight against the spread of this deadly disease in terms of infrastructure, finance, data sources, protective gears, life-risk treatments and several other resources. The artificial intelligence researchers are focusing their expertise knowledge to develop mathematical models for analyzing this epidemic situation using nationwide shared data. To contribute towards the well-being of living society, this article proposes to utilize the machine learning and deep learning models with the aim for understanding its everyday exponential behaviour along with the prediction of future reachability of the COVID-2019 across the nations by utilizing the real-time information from the Johns Hopkins dashboard.
www.medrxiv.org
2020
Artículo
https://www.medrxiv.org/content/10.1101/2020.04.08.20057679v1.full.pdf
Inglés
VIRUS RESPIRATORIOS
Aparece en las colecciones: Artículos científicos

Cargar archivos:


Fichero Tamaño Formato  
1104785.pdf3.29 MBAdobe PDFVisualizar/Abrir