Por favor, use este identificador para citar o enlazar este ítem:
http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/3655
COVID-19 Epidemic Analysis using Machine Learning and Deep Learning Algorithms | |
Narinder Singh Punn. Sanjay Kumar Sonbhadra. Sonali Agarwal. | |
Acceso Abierto | |
Atribución-NoComercial-SinDerivadas | |
10.1101/2020.04.08.20057679 | |
The catastrophic outbreak of Severe Acute Respiratory Syndrome - Coronavirus (SARS-CoV-2) also known as COVID-2019 has brought the worldwide threat to the living society. The whole world is putting incredible efforts to fight against the spread of this deadly disease in terms of infrastructure, finance, data sources, protective gears, life-risk treatments and several other resources. The artificial intelligence researchers are focusing their expertise knowledge to develop mathematical models for analyzing this epidemic situation using nationwide shared data. To contribute towards the well-being of living society, this article proposes to utilize the machine learning and deep learning models with the aim for understanding its everyday exponential behaviour along with the prediction of future reachability of the COVID-2019 across the nations by utilizing the real-time information from the Johns Hopkins dashboard. | |
www.medrxiv.org | |
2020 | |
Artículo | |
https://www.medrxiv.org/content/10.1101/2020.04.08.20057679v1.full.pdf | |
Inglés | |
VIRUS RESPIRATORIOS | |
Aparece en las colecciones: | Artículos científicos |
Cargar archivos:
Fichero | Tamaño | Formato | |
---|---|---|---|
1104785.pdf | 3.29 MB | Adobe PDF | Visualizar/Abrir |